Measurement of transverse Emittance

- The beam width x_{max} at s_1 is measured, and therefore $\sigma_{11}(1, k_i) = x_{max}^2(k_i)$.
- Different focusing of the quadrupole $k_1, k_2...k_n$ is used: $\Rightarrow \mathbf{R}_{\mathbf{focus}}(k_i)$, including the drift, the transfer matrix is changed $\mathbf{R}(k_i) = \mathbf{R}_{\mathbf{drift}} \cdot \mathbf{R}_{\mathbf{focus}}(k_i)$.
- Task: Calculation of *beam* matrix $\sigma(0)$ at entrance s_0 (size and orientation of ellipse)
- The transformations of the beam matrix are: $\sigma(1, k) = \mathbf{R}(k) \cdot \sigma(0) \cdot \mathbf{R}^{\mathbf{T}}(k)$. \implies Resulting in a redundant system of linear equations for $\sigma_{ij}(0)$:

$$\sigma_{11}(1,k_1) = R_{11}^2(k_1) \cdot \sigma_{11}(0) + 2R_{11}(k_1)R_{12}(k_1) \cdot \sigma_{12}(0) + R_{12}^2(k_1) \cdot \sigma_{22}(0) \text{ focusing } k_1$$

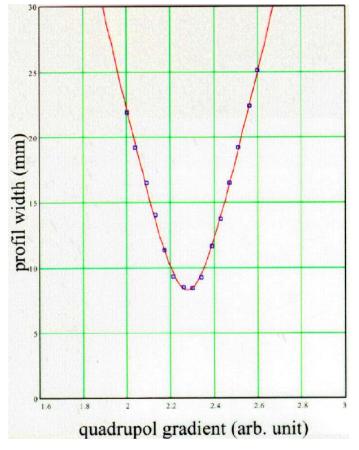
 $\sigma_{11}(1,k_n) = R_{11}^2(k_n) \cdot \sigma_{11}(0) + 2R_{11}(k_n)R_{12}(k_n) \cdot \sigma_{12}(0) + R_{12}^2(k_n) \cdot \sigma_{22}(0) \text{ focusing } k_n$

- To learn something on possible errors, n > 3 settings have to be performed. A setting with a focus close to the SEM-grid should be included to do a good fit.
- Assumptions:
 - Only elliptical shaped emittance can be obtained.
 - No broadening of the emittance e.g. due to space-charge forces.
 - If not valid: A self-consistent algorithm has to be used.

Measurement of transverse Emittance

Example:

The beam width measured at GSI-LINAC by SEM-grid:



Simplification for 'thin lens approximation':

$$\mathbf{R}_{\mathbf{focus}}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix}$$

$$\Rightarrow \mathbf{R}(K) = \mathbf{R}_{\mathbf{drift}} \cdot \mathbf{R}_{\mathbf{focus}} = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}.$$

Measurement of $\sigma(1, K) = \mathbf{R}(K)\sigma(0)\mathbf{R}^{T}(K)$ $\sigma_{11}(1, K) = L^{2}\sigma_{11}(0) \cdot K^{2}$ $+2(L\sigma_{11}(0) + L^{2}\sigma_{12}(0)) \cdot K + L^{2}\sigma_{22} + \sigma_{11}$ $\equiv aK^{2} - 2abK + ab^{2} + c$

The σ -matrix at quadrupole is:

$$\sigma_{11}(0) = \frac{a}{L^2}$$

$$\sigma_{12}(0) = -\frac{a}{L^2} \left(\frac{1}{L} + b\right)$$

$$\sigma_{22}(0) = \frac{1}{L^2} \left(ab^2 + c + \frac{2ab}{L} + \frac{a}{L^2}\right)$$

$$\epsilon = \sqrt{\det \sigma(0)} = \sqrt{\sigma_{11}(0)\sigma_{22}(0) - \sigma_{12}^2(0)} = \sqrt{ac}/L^2$$

Peter Forck, JUAS Archamps