Group 4 Final Presentation

Fernando Montes, Nabin Rijal, Jaclyn Schmitt JINA-CEE Ion Optics Summer School

September 14, 2018

Emittance calculation

- Quadrupole \rightarrow drift \rightarrow beam spot size

Simplification for 'thin lens approximation':

$$
\begin{aligned}
& \mathbf{R}_{\text {focus }}(K)=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & 0 \\
K & 1
\end{array}\right) \quad \text { Where } \mathrm{K}[1 / \text { Length }=\text { Quad gradient*Quad EFL/Brho } \\
& \Rightarrow \mathbf{R}(K)=\mathbf{R}_{\text {drift }} \cdot \mathbf{R}_{\text {focus }}=\binom{1+L K}{K} . \quad \sigma(1, K)=\mathbf{R}(K) \sigma(0) \mathbf{R}^{T}(K) \\
& x_{0}{ }^{2}=\sigma_{11}(1, \mathrm{~K})=\mathrm{f}\left(\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0), \mathrm{K}\right) \quad \text { Emittance }=\sqrt{\sigma_{11}(0) \sigma_{22}(0)-\sigma_{12}^{2}(0)}
\end{aligned}
$$

$\varepsilon_{\text {cosy }}=8.43 \mathrm{E}-07$	m rad
$\varepsilon_{\text {th }}=6.28 \mathrm{E}-07$	m rad

Emittance calculation

First-order quadrupole matrix $\quad \frac{d B}{d x} \neq 0 \quad \frac{d B}{d y} \neq 0$

$\cos k_{q} L$	sin $\mathrm{k}_{\mathrm{q}} \mathrm{L}$	0	0	0	0
$-\mathrm{k}_{\mathrm{q}} \sin \mathrm{k}_{\mathrm{q}} \mathrm{L}$0	$\cos \mathrm{k}_{\mathrm{q}} \mathrm{L}$	0	0	0	0
	0	$\cosh \mathrm{k}_{\mathrm{q}} \mathrm{L}$	$\frac{1}{k_{q}} \sinh k_{q}{ }^{L}$	0	0
,					
0	0	$\mathrm{k}_{\mathrm{q}} \sinh \mathrm{k}_{\mathrm{q}} \mathrm{L}$	$\cosh \mathrm{k}_{\mathrm{q}} \mathrm{L}$	0	0
0	0	0	0	1	0
			-		
0	0	0	0	0	1

Simplification for 'thin lens approximation':
$\mathbf{R}_{\text {focus }}(K)=\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right) \equiv\left(\begin{array}{cc}1 & 0 \\ K & 1\end{array}\right)$
$\Rightarrow \mathbf{R}(K)=\mathbf{R}_{\mathrm{drift}} \cdot \mathbf{R}_{\text {focus }}=\left(\begin{array}{cc}1+L K & L \\ K & 1\end{array}\right)$.

$\varepsilon_{\text {cosy }}=$	$9.72 \mathrm{E}-07$	m rad
$\varepsilon_{\text {th }}=$	$6.28 \mathrm{E}-07$	m rad

$L L=0.3401$;
Rfocus $=\{\{\operatorname{Cosh}[k L L], 1 / k \operatorname{Sinh}[k L L]\},\{k \operatorname{Sinh}[k L L], \operatorname{Cosh}[k L L]\}\} ;$ Rdrift $=\{\{1, \mathrm{~L}\},\{0,1\}\} ;$
R = Rdrift.Rfocus;
sig0 $=\{\{s 11, s 12\},\{s 12, s 22\}\} ;$
sig1 = R.sig0. Transpose [R];
$\mathbf{x}\left[s 11_{-}, s 12_{-}, s 22_{-}, k_{-}\right]=\operatorname{sig}[[1,1]]$
Out [370] $=(\operatorname{Cosh}[0.3401 k]+5.915 k \operatorname{Sinh}[0.3401 k])$
$\left(\operatorname{si2}\left(5.915 \operatorname{Cosh}[0.3401 \mathrm{k}]+\frac{\operatorname{Sinh}[0.3401 \mathrm{k}]}{\mathrm{k}}\right)+\operatorname{si1}(\operatorname{Cosh}[0.3401 \mathrm{k}]+5.915 \mathrm{k} \operatorname{Sinh}[0.3401 \mathrm{k}])\right.$ $\left(5.915 \operatorname{Cosh}[0.3401 \mathrm{k}]+\frac{\operatorname{Sinh}[0.3401 \mathrm{k}]}{\mathrm{k}}\right)$
$\left(s 22\left(5.915 \operatorname{Cosh}[0.3401 k]+\frac{\operatorname{Sinh}[0.3401 k]}{k}\right)+s 12(\operatorname{Cosh}[0.3401 k]+5.915 k \operatorname{Sinh}[0.3401 k])\right.$

Mass Resolution Study

Parameter	Change that results in 5\% decrease in mass resolution	
XX	12	$\%$
AX	3	$\%$
Pitch	0.19	degrees
Yaw	0.08	degrees
Roll	0.25	degrees
DX	0.82	mm
DY	0.35	mm

Lessons Learned:

- Mass resolution is more sensitive to beam angle than beam position.
- Mass resolution is extremely sensitive to quadrupole alignment.
- The resolution can be recovered by tuning the fields of the magnets.

$p\left({ }^{23} \mathrm{Al}, \mathrm{y}\right){ }^{24} \mathrm{Si}$ with SECAR

Projectile Energy $=3.552 \mathrm{MeV}$
The max-min ${ }^{24} \mathrm{Si}$ energy is 3.463-3.343 MeV.

The max angle is ~ 9 mrad, which is well
 within the SECAR's acceptance of 25 mrad..

The energy spread is $+/-1.76 \%$, which fits the SECAR's energy acceptance of 3.1%

The max-min γ energy is $3.492-3.372 \mathrm{MeV}$.

Charge state selection

How charge states are selected?
Charge $=5$, Resolution $=593.5$

Charge $=4$ is blue, 6 is red, Resolution $=5.9 \mathrm{E}-05$

