Group 4 Final Presentation

Fernando Montes, Nabin Rijal, Jaclyn Schmitt

JINA-CEE Ion Optics Summer School

September 14, 2018

Emittance calculation

• Quadrupole \rightarrow drift \rightarrow beam spot size

Simplification for 'thin lens approximation': $\mathbf{R}_{\mathbf{focus}}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix} \quad \text{Where K [1/Length] = Quad gradient*Quad EFL/Brho}$ $\Rightarrow \mathbf{R}(K) = \mathbf{R}_{\mathbf{drift}} \cdot \mathbf{R}_{\mathbf{focus}} = \begin{pmatrix} 1+LK & L \\ K & 1 \end{pmatrix} \cdot \sigma(1,K) = \mathbf{R}(K)\sigma(0)\mathbf{R}^{T}(K)$

$$x_0^2 = \sigma_{11}(1,K) = f(\sigma_{11}(0), \sigma_{12}(0), \sigma_{22}(0), K)$$
 Emittance = $\sqrt{\sigma_{11}(0)\sigma_{22}(0) - \sigma_{12}^2(0)}$

Emittance calculation

First-order qu	adrupole mat	rix dB	$=0 \frac{dB}{dy} \neq 0$		
cos k _q L	$\frac{1}{k_q}$ sin k_q^L	0	0	0	0
-k _q sin k _q L	cos k L q	0	0	0	0
0	0	cosh k _q L	$\frac{1}{k_q}$ sinh k_qL	0	0
•	0	$k_q \sinh k_q L$	cosh k L	0	0
0	0	0	0	1	0
0	0	0	0	0	1

Simplification for 'thin lens approximation':

$$\mathbf{R_{focus}}(K) = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ K & 1 \end{pmatrix}$$

$$\Rightarrow \mathbf{R}(K) = \mathbf{R_{drift}} \cdot \mathbf{R_{focus}} = \begin{pmatrix} 1 + LK & L \\ K & 1 \end{pmatrix}$$

Problem: 1/kq *sinh kq L is not zero

Thin less approximation is not valid!

 $[n[383]:= L = 5.915; \\ LL = 0.3401; \\ Rfocus = {{Cosh[kLL], 1/kSinh[kLL]}, {kSinh[kLL], Cosh[kLL]}}; \\ Rdrift = {{1, L}, {0, 1}}; \\ R = Rdrift.Rfocus; \\ sig0 = {{s11, s12}, {512, s22}}; \\ sig1 = R.sig0.Transpose[R]; \\ x[s11_, s12_, s22_, k_] = sig1[[1, 1]] \\ Out[370]: (Cosh[0.3401k] + 5.915kSinh[0.3401k]) \\ \left(s12 \left(5.915 Cosh[0.3401k] + \frac{Sinh[0.3401k]}{k} \right) + s11 (Cosh[0.3401k] + 5.915kSinh[0.3401k]) \\ \left(5.915 Cosh[0.3401k] + \frac{Sinh[0.3401k]}{k} \right) \\ \left(s22 \left(5.915 Cosh[0.3401k] + \frac{Sinh[0.3401k]}{k} \right) + s12 (Cosh[0.3401k] + 5.915kSinh[0.3401k])$

ε _{cosy} =	9.72E-07	m rad
ε _{th} =	6.28E-07	m rad

Mass Resolution Study

Parameter	Change that results in 5% decrease in mass resolution		
XX	12	%	
AX	3	%	
Pitch	0.19	degrees	
Yaw	0.08	degrees	
Roll	0.25	degrees	
DX	0.82	mm	
DY	0.35	mm	

Lessons Learned:

- Mass resolution is more sensitive to beam angle than beam position.
- Mass resolution is extremely sensitive to quadrupole alignment.
- The resolution can be recovered by tuning the fields of the magnets.

 $p(^{23}Al,\gamma)^{24}Si$ with SECAR

Projectile Energy = 3.552 MeV

The max-min ²⁴Si energy is 3.463-3.343 MeV.

The max angle is ~9 mrad, which is well within the SECAR's acceptance of 25 mrad..

The energy spread is +/- 1.76%, which fits the SECAR's energy acceptance of 3.1%

The max-min γ energy is 3.492-3.372 MeV.

Charge state selection

