The JINA Center for the Evolution of the Elements

Separator Ion Optics School NSCL, Michigan State University

Series of Four Lectures plus COSY Tutorials September 10-14, 2018

Georg P. Berg University of Notre Dame JINA Center for the Evolution of the Elements

The Lecture Series

An Introduction to Ion-Optics

1st Lecture: 9/10/18: Formalism and ion-optical elements

2nd Lecture: 9/12/18: Ion-optical systems and spectrometers

3rd Lecture: 9/12/18: Recoil separators for nuclear astrophysics, St. GEORGE

4rd Lecture: 9/13/18: The recoil separator SECAR for FRIB

Tutorials in the afternoon: 9/10/18 – 9/14/18: COSY Infinity

Review 2nd Lecture

Ion-optical systems, spectrometers

High resolution spectrometers

Full dispersion matching

Diagnostics and field measurements.

Observing faint radiation near the sun:

An analogy for observing nuclear particles close to the beam

Solar Eclipse Coronagraph

Solar Eclipse 1999

2005/12/01 14:42 SOHO, large angle

Shadow of moon of Earth

The Chromosphere of the Sun in $H\alpha$

H α line, $\lambda = 656.28$ nm

 $\Delta \lambda = 0.07 nm$ Narrow Band Filter

Magnetic (Β_ρ) Separation of Beam & Reaction Products in Spectrometer Experiments near 0°

K600, Grand Raiden Spectrometers:

 $(^{3}\text{He,t}), (p,t), (\alpha, \alpha'), (p,p'), (\alpha, ^{8}\text{He})$

Special Faraday cups to stop beam inside spectrometer or near focal plane

K600 Spectrometer (IUCF)

The K600 is shown in 0° Transmission mode for inelastic scattering at 0°

High Dispersion Plane B(D1) > B(D2)

Grand Raiden High Resolution Spectrometer

Many different reactions are involved in the nuclei synthesis

With recoil separators, we study the important (p,γ) and (α,γ) radiative capture reactions that take place e.g. in the rp process.

Example: ${}^{22}Ne(\alpha,n){}^{25}Mg$, ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$

The potential existence of low energy resonances causes considerable uncertainty in reaction rate Stable Beams: St. GEORGE RI Beams: SECAR

Low energy resonances Cannot be measure due to low cross sections that do not rise above background from:

1) Cosmic rays

²⁶Mg

- 2) Surrounding radio-active materials
- 3) Beam-related background

Solutions:

- 1) Go underground (Salt mine!)
- 2) Inverse kinematics (recoil separator)

Rigidity and Acceptance Parameters Determined by Reaction Kinematics and Target Effects

Separator for Capture Reactions

Table 1

Design parameters of the St. George magnetic recoil separator.

Table 2 Sample of reactions of astrophysical interest

Beam and recoils have same momenta, need E field for separation.

		Inverse (α, γ) reaction								
Beam	Recoil	Beam	E _{cm}	Recoil	Recoil	Recoil	Half	Е	Mom.	Βρ
		E_{lab}		E_{lab}	Q[9]	Abund.	Angle	Range	р	
		MeV	MeV	MeV		%	mrad	±%	MeV/c	T/m
¹⁶ O	20 Ne	5.80	1.16	4.640	5	42	14.2	2.8	415.7	0.277
		12.5	2.50	10.02	6	40	11.8	2.4	610.9	0.340
¹⁸ O	$^{22}\mathrm{Ne}$	1.94	0.35	1.591	3	38	39.2	7.8	177.1	0.284
		3.30	0.60	2.700	4	42	30.9	6.2	332.6	0.277
$^{34}\mathrm{S}$	³⁸ Ar	10.0	1.05	8.950	8	32	10.4	2.1	795.7	0.332
		38.0	4.00	34.00	12	32	7.20	1.4	1551	0.431
³⁶ Ar	^{40}Ca	12.5	1.25	11.25	9	31	9.10	1.8	915.3	0.339
		40.0	4.00	36.00	13	30	6.70	1.3	1638	0.420

St. George

Reactions and Design Parameters

Achromatic magnet separator

Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002

Achromatic Final focal plane, small beam spot e.g. for detector system

Assume foci at I & F, i.e. $A_{12} = B_{12} = 0$. Derive the first order achromatic condition of the system $0 \rightarrow F$ and compare with the dispersion matching condition. First order TRANSPORT Matrix R_{µV}

Hagnification Mx Lateral Dispersion Focusing fot R12 (R1) x(t) 0 0 0 R16 x $\theta(t)$ Angular Disp R21 R22 0 0 R26 0 0 y(t) 0 0 R₃₃ R34 0 0 уо = (2) R43 $\varphi(t)$ 0 0 R44 0 0 φ_{o} L(t) R 51 0 R 52 0 1 R₅₆ l. **i**(t) 0 0 0 0 0 80 1 7 Xa TRANSPORT. R - Matrix

Solution of Exercise

$$\begin{aligned} x_{I} &= A_{11} x_{0} + A_{12} \theta_{0} + A_{16} \delta_{0} & |A_{12} = 0 \\ &= A_{11} x_{0} + A_{16} \delta_{0} & (25) \\ x_{F} &= B_{11} x_{I} + B_{12} \theta_{I} + B_{16} \delta_{0} & |B_{12} = 0 \\ &= B_{11} x_{I} + B_{16} \delta_{0} & | \text{ substitute } x_{I} \text{ using } (25) \\ &= B_{11} (A_{11} x_{0} + A_{16} \delta_{0}) + B_{16} \delta_{0} \\ &= B_{11} A_{11} x_{0} + (B_{11} A_{16} + B_{16}) \delta_{0} \end{aligned}$$

Condition for achromaticity: $A_{16} = -B_{16} / B_{11}$

Note: This is the Dispersion Matching condition for C = T = 1

Achromatic magnet separator

 $B\rho = p/q$ selection $\Delta p/p_0$ range selection

Λ

for similar velocities v m/q selection,

for fully stripped ions A/Z selection

A

Example: Production of ²¹Na via H(²¹Ne,n)²¹Na with ²¹Ne⁷⁺ beam at 43MeV/nucleon using the TRIµP Separator, KVI Groningen Ions after target fully stripped e.g. ²¹Ne¹⁰⁺

²¹Ne beam with $\approx 10^{10}$ ions/s with $B\rho(^{21}Ne)/B\rho(^{21}Na) \cong 1.09$ is all but eliminated by a slit (SH2) in front of plane I

Note:

В

Ions with A/Z ~ 2 are not separated !

Achromatic magnet separator with Wedge

Figure from Experimental Techniques at NSCL, MSU, Th. Baumann, 8/2/2002

Effect of "Wedge" \Rightarrow

Note:

For large dp/p) the degrader should be Wedge-shaped to restore achromaticity effected by degrader with constant thickness

TRIµP an achromatic secondary beam separator

A1900 MSU/NSCL Fragment Separator

Another example are the BigRIPS Fragment Separator at RIKEN in Japan And the Super-FRS at GSI.

Gas-filled separators Concept

PROBLEM: After target, a distribution of several charge states q exists for low E or large Z, with Bp range typically larger than acceptance causing transmission losses.

REMEDY: gas-filled separator

Rays in a magn. dipole field without and with gas-filling

Measured spectra as function of gas pressure (e.g. He, Ar)

M. Paul et al. NIM A 277 (1989) 418

TRIµP ion-optics Section B

A "long" achromatic separator system is not suitable for a gas-filled separator that should be "short" to reduce statistical E spread and have "large dispersion"

		0				
1	ray	x [mm]	Θ [mrad]	$\Delta E/E$ [%]	y [mm]	Φ [mrad]
	1	0	30	4.0	-1.5	30
	2	2	30	0	0	30
	3	0	30	0	1.5	0
	4	0	0	4.0	0	-30
	5	0	30	-4.0	1.5	-30
	6	2	0	0		
	7	0	-30	4.0		
	8	0	-30	0		
	9	0	-30	-4.0		

Therefore:

The TRIµP separator was Designed to be able operate with Section A as beam line & Section B as short gas-filled separator with large dispersion

21

Charge state distribution in TRIµP separator with gas-filling

Difference between Fragment and Recoil Separators

Fragment separators use high energy beams to produce efficiently rare isotopes (RI).

Recoil separators work at low energy to study astrophysical reactions.
CONSEQUENCES:

 \Box Fragment separators use the ΔE loss in Wedges to separate RIs.

Recoils separators use Electric fields to separate beam and recoils due to their mass differences. Either electric dipoles or Wien filters.

DRAGON

Recoil Separator with Electric Dipoles

Study of astrophyscis reactions using radioactive beams:

e.g. ²¹Na(p,γ)²²Mg in inverse kinematics using a radioactiv ²¹Na beam of 4.62 MeV to study NeNa cycle

Ref. Dragon Recoil Separator Optics, The Recoil Group, 1/18/1999,TRIUMF

24

EMMA Recoil Separator for ISAC-II at TRIUMF

Fig. 1. Schematic view of EMMA, showing the target, quadrupole and dipole magnets, and electric dipoles. The detector box is also indicated.

B. Davids, TRIUMF & C. Davids, ANL

Ion-optics of ¹⁶O 3⁺ and 6⁺ ions

3rd order calculations using COSY Infinity

ERNA

Recoil Separator with Wien Filters

¹²C beam mainly stopped inFaraday cup between QS1 and MD

Fig. 2. Samples of ¹⁶O trajectories are shown for (a) E = 0.70 MeV ($q_0 = 3^+$, $\theta_{max} = 1.9^\circ$, $\Delta E = 0.13$ MeV) and (b) E = 5.0 MeV ($q_0 = 6^+$, $\theta_{max} = 1.0^\circ$, $\Delta E = 0.44$ MeV). The trajectories start at the jet gas-target (⁴He target density $= 1 \times 10^{18}$ atoms/cm²) and are followed through the filtering and focusing elements of ERNA (indicated by square boxes) up to the telescope (WF = Wien filter, QS = quadrupole singlet, QD = quadrupole doublet, QT = quadrupole triplet, MD = magnetic dipole)

Study of astrophyscis reactions using radioctive beams.

Example: Hot CNO breakout reaction ${}^{19}Ne(p,\gamma){}^{20}Na$ in inverse kinematics using a radioactive ${}^{19}Ne$ beam of 10.1 MeV

Ref. M. Couder, PhD Thesis July 2004, Louvain-La-Neuve

ARES

Recoil Separator with a Wien Filter

Recoil Separator St. George

Study of (α, γ) [and (p, γ)] of astrophysics importance, for A < \approx 40 targets, emphasis on low energies, i.e. very small cross sections, max. energy of 4 MeV/A

An overview of reaction result in the following DESIGN PARAMETERS

Maximum magnetic rigidity Bρ:0.45 TmMinimum magnetic rigidity Bρ:0.10 TmMomentum acceptance dp:+/- 3.7 %Angle acceptance, horiz & vert.: +/- 40 mrad

Further design considerations:

- Two phase construction
- Charge selection by Bp analysis (typical: 50% Transmission)
- High mass resolution ($\Delta m/m \cong 100$, 1st phase with 2 Wien Filters)
- Higher mass resolution ($\Delta m/m \cong 600$) 2nd phase
- Wien Filters for mass resolution (energy too low for "Wedge" method)

St. George, Layout

Fig. 1. Layout of the St. George recoil separator.

St. George Ion-optics

Characteristic rays

33

St. George, Envelope

Fig. 3. Fringe field comparison of a standard Wien filter (left panel) and the newly designed (right panel). The ratio of the fields is also shown.

Fig. 4. A top view of the horizontal midplane of the Wien filter is shown. Electrostatic dipole is mounted inside the magnet.

St. George Wien Filter (velocity filter)

- SECAR radiative capture on unstable beams, can only be measured in inverse kinematics
- Designed to make use of high-intensity FRIB beams
- Up to masses A = 65 to cover the expected mass range of the rp process, (p, γ)
- Beam rejection 10^{17} , therefore mass separation m/dm > 750
- 4 ion-optical sections, charge selection, first Wien Filter, second Wien Filter, cleanup section
- Energy range $E_{cm} = 0.2 3 \text{ MeV}$

Broad Set of Reactions Define Rigidity and Acceptance Parameters Charge B

					Half			
	E _{cm}	Q-	dE/E	Recoil	Angle,	Βρ	Ερ	Βρ
	Beam	value	Range	Charge	Recoil	Recoil	Recoil	Beam
Reaction	MeV	MeV	%	q	mrad	Tm	MV	Tm
¹⁵ O(α,γ) ¹⁹ Ne	0.5	3.529	±3.1	3	±15.6	0.29	1.25	0.14
	3	3.529	±2.1	6	±10.3	0.35	3.75	0.35
⁴⁴ Ti(α,γ) ⁴⁸ Cr	0.5	7.696	±2.3	4	±11.7	0.58	2.74	0.19
	3	7.696	±1.3	10	±6.2	0.57	6.59	0.48
¹⁹ Ne(p,γ) ²⁰ Na	0.2	2.193	±1.3	4	±6.4	0.31	1.88	0.21
	3	2.193	±0.71	9	±3.6	0.54	12.5	0.81
²³ Mg(p,γ) ²⁴ Al	0.2	1.872	±0.92	4	±4.6	0.38	2.28	0.15
	3	1.872	±0.56	11	±2.8	0.53	12.4	0.58
²⁵ Al(p,γ) ²⁶ Si	0.2	5.517	±2.3	4	±11.7	0.41	2.48	0.15
	3	5.517	±0.90	11	±4.5	0.58	13.5	0.58
³⁰ Ρ(p,γ) ³¹ S	0.2	6.133	±2.2	4	±10.8	0.49	3.97	0.15
	3	6.133	±0.80	12	±4.0	0.63	14.8	0.58
³³ Cl(p,γ) ³⁴ Ar	0.2	4.663	±1.5	5	±7.6	0.43	2.6	0.31
	3	4.663	±0.6	14	±3.1	0.59	14.0	1.19
³⁴ Cl(p,γ) ³⁵ Ar	0.2	5.897	±1.8	5	±9.2	0.44	2.7	0.32
	3	5.897	±0.7	14	±3.5	0.61	14.4	1.22
³⁷ К(р,γ) ³⁸ Са	0.2	4.548	±1.3	5	±6.6	0.48	2.9	0.27
	3	4.548	±0.54	15	±2.7	0.62	14.6	1.04
³⁸ К(р,γ) ³⁹ Са	0.2	5.763	±1.6	5	±8.1	0.49	3.0	0.27
	3	5.763	±0.61	15	±3.1	0.64	15.0	1.06
⁶⁵ As(p,γ) ⁶⁶ Se	0.2	2.030	±0.35	6	±1.8	0.70	4.3	0.18
	3	2.030	±0.21	21	±1.0	0.77	18.4	0.71

- These reactions define the following required design parameters
 - Even at highest energy most beams can be used for setup of experiments with sufficient count rate
 - Otherwise less-abundant higher charge states can be used

Min Max. Bp	0.14- 0.80 Tm
Min. – Max Ep	1.0-19 MV

Angle Accept., x, y +/- 25 mrad Energy Acceptance +/- 3.1 %

Separator for Capture Reactions

SECAR Layout

Separator for Capture Reactions

SECAR Recoil Separator for Astrophysical Capture Reactions

Separator for Capture Reactions

Ion Optics Optimized

Section 1 Target to FP1 Charge state Selection **Dispersive focus** Section 2 FP1 to FP2 Mass Resolv. Power $R_m = 747$ Mass Resolution $R_{HO} = 508$ Achromatic focus

Charge B

Section 3 FP2 to FP3 Mass Resolv. Power $R_m = 1283$ Mass Resolution = 767Disp. $R_{16}=0$, focus $R_{12}=0$

Section 4 FP3 to Det1/Det2 Particle detection, HO correction **Cleanup** section

Optimized up to 4th order, using 4 Hexapoles, 1 Octupole Dipole edges up to 4th order

Separator for **Capture Reactions**

End Lecture 3

Design Parameters of SECAR for the FRIB at MSU

Design parameters of the SECAR magnetic recoil separator.

Maximum rigidity $B\rho$	$0.80~\mathrm{Tm}$		
Minimum rigidity ${\rm B}\rho$	$0.14~\mathrm{Tm}$		
Angle acceptance, vert., horiz.	$\pm 25~\mathrm{mrad}$		
Energy acceptance	\pm 3.1 $\%$		
Mass separation m/ Δm	≈ 800		
Bending radius	$125~{\rm cm}$		

Direct measurement of astrophysically relevant (p,γ) reactions up to mass about 66 for the rp- process using radioactive beams of FRIB

Radiative capture in inverse kinematics

- •Reject the beam
- •Transport the recoils in a detector

This slide from: Manoël Couder

Beam and recoils have same momenta. No separation by B field alone, need E field.

SECAR Wien filter

• Cross section in the center, Beam enters into the plane. The Good-Field-

Region is indicated by dotted lines between the kidney shaped electrodeS

SECAR Wien Filter						
Cood-field	horizontal	mm	220			
region	vertical	mm	40			
	Max. B field	Т	0.12			
Dinala	Effective field length	mm	2350			
magnet	Pole gap, vertical	mm	680			
	Pole width	mm	1020			
	B field, homogeneity		±0.002 in GFR			
	Estimated power	kW	50			
	Iron weight	kg	4000			
	Weight of 2 coils	kg	1150			
	Max. E field	kV/mm	2.8			
Fleatrostatic	Max. Voltage on electrodes	kV	± 300			
system	Max. Homigenizing electrode	kV	± 110			
	Effective field length	mm	2350			
	Electrode gap, horizontal	mm	220			
	Electrode height, vertical	mm	378			
	E field, homogeneity		±0.002 in GFR			
	Electrode to grounded chamber	mm	141			
	Max. E field in gap to wall	kV/mm	3.8			
	2 Electrodes, Ti, non magn.	kg	approx. 1000			
	Vacuum chamber, SS, non magn.	kg	approx. 1000			

SECAR WF Parameters