MACHINE LEARNING IN QCD THEORY

MICHELLE KUCHERA **DAVIDSON COLLEGE**

FRIB THEORY SEMINAR **10 MARCH 2020**

COMPUTATIONAL GRAPH

 $\hat{f} = x_1 w_1 + x_2 w_2$

MACHINE LEARNING: LEARNING FROM DATA

REGRESSION

SUPERVISED LEARNING

LOGISTIC REGRESSION

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

LOGISTIC REGRESSION

CLASSIFICATION

LOGISTIC REGRESSION

$$\frac{1}{-e^{-(x_1w_1+x_2w_2)}}$$

+ Nonlinearity

Features

Application 1: How can experimental observables constrain theoretical models?

STRUCTURE OF THE NUCLEON

Quantum Chromodynamics

Quantum probability distributions (QPD) characterize the internal structure of a nucleon

Can we prediction QPD parameters directly from experimental cross section data?

MIXTURE DENSITY NETWORK

Output Layer Interpretation:

$$p(\mathbf{t}|\mathbf{x}) = \sum_{k=1}^{K} \pi_k(\mathbf{x}) \mathcal{N}\left(\mathbf{t}|\boldsymbol{\mu}_k(\mathbf{x}), \sigma_k^2(\mathbf{x})\right)$$

AUTOENCODER

Hidden Layer

Features

AUTOENCODER

LATENT SPACE

Features

AUTOENCODER: DIMENSIONALITY REDUCTION

LATENT SPACE

PARAMETER-SUPERVISED AUTOENCODER (PSA)

LATENT SPACE parameters

STRUCTURE OF THE NUCLEON

Quantum Chromodynamics

Quantum probability distributions (QPD) characterize the internal structure of a nucleon

Can we prediction QPD parameters directly from experimental cross section data?

Feature Extraction

Classification

DISCRETE CONVOLUTION

Input

ADAPTED FROM DEEP LEARNING, ADAM GIBSON & JOSH PATTERSON

Feature Extraction

Classification

RECTIFIED LINEAR UNIT (ReLU)

- 1	- 1	- 1	- 1	- 1	
- 1	- 1	- 1	- 1	- 1	
5	5	5	5	5	
- 1	- 1	- 1	- 1	- 1	
- 1	- 1	- 1	- 1	- 1	

and the second s

الايران تتها أوتها ليستهيدينها المستجرا بالا الالحاد الحاصر كالعام الح

 2011 II 101		2	
		2.5.	
			 · · · · · · · · · · · ·
	ani ti ti ani ani a		
			······································
	21 2		n

7.2

Feature Extraction

Classification

MAX POOLING

1	1	2	4
5	6	9	3
3	2	4	4
1	2	0	7

max pool with 2x2 filters and stride 2

Feature Extraction

Classification

Application 2: Can we use machine learning to simulate data?

GENERATIVE MODELS

SIMULATION, EVENT GENERATION

AUTOENCODER

LATENT SPACE

Features

AUTOENCODER: GENERATOR

LATENT SPACE

Features

GENERATIVE ADVERSARIAL NETWORKS (GANS)

SIMULATION, EVENT GENERATION

GENERATOR

maximize D(G(z))

Real and Fake Images

Update Generator

DISCRIMINATOR

minimize D(G(z))

GAN (DCGAN)

WGAN

MAXIMUM MEAN DISCREPANCY (MMD) GAN

FAT-GAN

MMD: Critic loss: batch distribution matching

 $x_{
m bj}$

 $x_{
m bj}$

ACKNOWLEDGMENTS

- Raghu Ramanujan, Meg Houck, Eleni Tsitinidi, Jose Cruz, Andrew Hoyle, Michael Robertson, Evan Pritchard, Robert Solli, John Blue, Zach Nussbaum, Ryan Strauss, Jack Taylor
- JLab/ODU Theory Center, Hall B: Nobuo Sato, Wally Melnitchouk, Yaohang Li, Yasir Alanazi, Manal Almaeen

ALPhA COLLEGE ΟΝ

