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(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ
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(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ

High resolution picture:

high-k tails (k >> kF) present

correlated pairs w/large ~ back-to-back momenta
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(RG) Resolution Scale    H = H(Λ) max. momenta in low-energy wf’s ~  Λ

Low resolution picture:

no high-k tails (k >> kF)

resembles “mean field” picture
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Examples of Low resolution pictures
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Examples of Low resolution pictures

Nuclear Shell model
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Examples of Low resolution pictures

Nuclear Shell model Nuclear density functional 
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Examples of Low resolution pictures

Nuclear Shell model Nuclear density functional 

…Pretty much all our 
nuclear structure models…
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All nuclear structure models <==> Low resolution pictures

How did the high resolution picture arise?

exhibit A:  NN scattering (1950s-60s)
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All nuclear structure models <==> Low resolution pictures

How did the high resolution picture arise?

Neutron-proton scattering in the 
S-waves changes sign

exhibit A:  NN scattering (1950s-60s)

IF you insist on a local :

strong short-range repulsive core
needed to get s-wave sign change 

 

V(r)
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All nuclear structure models <==> Low resolution pictures

How did the high resolution picture arise?

mid-/long-range attraction

repulsive core

Neutron-proton scattering in the 
S-waves changes sign

exhibit A:  NN scattering (1950s-60s)
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All nuclear structure models <==> Low resolution pictures

How did the high resolution picture arise?

mid-/long-range attraction

repulsive core

Neutron-proton scattering in the 
S-waves changes sign

exhibit A:  NN scattering (1950s-60s)
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exhibit B:  Brueckner 1955 paper

MESON PA I R THEOR Y

with respect to g. The real difhculty in treating (C.24)
is that of extracting the self-energy and Green's function
renormalization from the last factor, without expanding
the log in a Taylor series. We have checked that the
first few terms are in agreement with the corresponding
expressions obtained by expanding our previous results
for the renormalization constants. We can recognize

the Green's function renormalization as a multiplicative
constant and the self-energy from its form

exp[—sly(t —t') ].
It appears that the meson scattering can be obtained

in closed form from the p dependent terms, but we shall
omit any further discussion of this matter.

PHYSICAL REVIEW VOLUM E 98, NUM B ER 5 JUNE 1, 1955

High-Energy Reactions and the Evidence for Correlations
in the Nuclear Ground-State Wave Function*

K. A. BRIIzcKNzz, R. J. EDEN, t AND N. C. FRANcIs
Indiana University, Bloomington, Indiana

(Received January 13, 1955)

High-energy nuclear reactions which depend strongly on nucleon position correlations in the nuclear
ground state are analyzed and shown to give evidence for the existence of marked correlation effects. The
following high-energy experiments are considered: nuclear photoeffect, meson absorption in nuclei, deuteron
pickup, proton-proton scattering in a nucleus, and meson production in proton-nucleus collisions. The cor-
responding cross sections depend on a nucleon momentum distribution which can be represented at high
energies by a single function giving reasonable agreement with all the experiments considered. This mo-
momentum distribution differs substantially from that for the shell model of the nucleus and thus provides
strong evidence for correlation in the nuclear ground-state wave function.
The transformation methods developed in previous papers are used to provide a uni6ed theory of the

above 6ve processes. The momentum distribution predicted by this theory is estimated by two methods
each of which gives close agreement with the experimentally determined function in the relevant energy
ranges.

I. INTRODUCTION
' 'N the last few years a considerable body of evidence
~ ~ has been accumulated which provides information
about the ground state of nuclei. This evidence comes
primarily from quite different types of experiment and
contains, as we shall show, upon first examination ap-
parent contradictions in the information given about
the ground state. One type of evidence, that perhaps is
best known, comes from the study of ground and low
excited states of nuclei and is encompassed in the very
successful shell model theory which has been useful and
accurate in predictions and understanding of nuclear
properties. We shall not attempt to summarize this
evidence on the theory here; we only comment that the
central feature of the shell model is the assumption that
nucleons move in the independent particle states of a
uniform potential. The success of the shell model as
usually formulated is very intimately connected with
this assumption since the existence of long mean free
paths and independent particle motion are rejections
of the absence of two-body interactions and of the

*Supported in part by a grant from the National Science
Foundation and the Once of Naval Research and the U. S.Atomic
Energy Commission.
t Smithson Research Fellow of the Royal Society, on leave of

absence from Clare College, Cambridge, England.

absence of correlations in the ground-state wave
function.
The second body of evidence which has direct bearing

on the nuclear ground state comes from high-energy
experiments. It is the purpose of this paper to summarize
this evidence and show how it may be reconciled with
the knowledge of nuclear structure derived from low-
energy experiments. We consider the following reac-
tions: deuteron pickup, meson capture, high-energy
photonuclear effect, high-energy proton-nucleus col-
lisions, and meson production in high-energy proton-
nucleus collisions. These high-energy reactions are all
similar in that they provide in e8ect a method of ob-
servation with great resolving power since they allow us
to probe nuclear structure with particles of wavelength
less than the typical nucleon spacing in a nucleus. Con-
sequently we can expect to resolve details of the struc-
ture which, are not accessible to us if we restrict ourselves
to observations at low energy with particles of large
wavelength. As we shall see, the information we obtain
from the high-energy experiments is in contradiction
with the shell model as usually formulated and requires
a change in the interpretation of the low-energy nuclear
phenomena and their relation to the ground-state wave
function.
This new interpretation has been described in
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function.
The second body of evidence which has direct bearing

on the nuclear ground state comes from high-energy
experiments. It is the purpose of this paper to summarize
this evidence and show how it may be reconciled with
the knowledge of nuclear structure derived from low-
energy experiments. We consider the following reac-
tions: deuteron pickup, meson capture, high-energy
photonuclear effect, high-energy proton-nucleus col-
lisions, and meson production in high-energy proton-
nucleus collisions. These high-energy reactions are all
similar in that they provide in e8ect a method of ob-
servation with great resolving power since they allow us
to probe nuclear structure with particles of wavelength
less than the typical nucleon spacing in a nucleus. Con-
sequently we can expect to resolve details of the struc-
ture which, are not accessible to us if we restrict ourselves
to observations at low energy with particles of large
wavelength. As we shall see, the information we obtain
from the high-energy experiments is in contradiction
with the shell model as usually formulated and requires
a change in the interpretation of the low-energy nuclear
phenomena and their relation to the ground-state wave
function.
This new interpretation has been described in

“Consequently it follows that the usual assumptions of the shell-model theory 
of the nucleus, that the particles move independently in a uniform potential, 

cannot be other than very approximately correct.”

B RUECKNER, EDEN, AND FRANCIS
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Fro. 1.Momentum distribution G(k) of 8 neutrons and 8 protons
in the independent-particle states of a square well with infinite
walls and of a harmonic oscillator well. For comparison the
Gaussian distribution of Eq. (3) is also given.

actions between a pair of nucleons; indeed the experi-
ments" seem to verify this assumption. Consequently
the ejection of a fast nucleon by the photoprocess, by
meson capture or as a member of the deuteron in
deuteron pickup, will usually be associated with the
ejection of another fast nucleon which was originally
paired with the directly ejected particle. Thus the
process corresponds to ejection of a fast pair of nucleons
from the ground state, with the residual nucleus only
weakly excited. This assumption (or a stronger assump-
tion) is explicit or implicit in the theory of all the high-
energy processes we have considered.
It is at this point that the usefulness of the high-

energy processes in the study of nuclear structure is
particularly apparent. As we will see in the following
development of the theory, if the ground-state function
is weakly correlated as for a Fermi gas or an inde-
pendent particle model, then the matrix elements will
vanish in the former case or be very small in the latter
case. Since the predominant low-momentum com-
ponents in the wave function make very little or no
contribution to the matrix elements, the importance of
the high momentum components is greatly enhanced
and hence it is possible to get detailed information
about this aspect of the wave function. Before pro-
ceeding to the theory of these processes, we shall first
"Byfield, Kessler, and Lederman, Phys. Rev. 86, 17 (1952);

see also reference 16.The effect of correlations involving more than
two nucleons will become apparent only in the high-energy tail
of the spectrum of the ejected nucleons, this will not influence
appreciably the total cross sections of the processes we consider.

make some brief remarks on the nature of the ground-
state wave function and in particular on our inter-
pretation of the shell model and its reconciliation with
the simultaneous success of the shell model and with
the high-energy phenomena which interest us.
It is well known from both experiment and theory

that the nucleon-nucleon interactions are strong and
short ranged. Consequently if the same forces act when
nucleons are immersed in a many-body medium, one
will very naturally expect to observe under appropriate
experimental conditions very appreciable correlations
in the nuclear wave function. On the other hand, the
success of the shell model has often been assumed to
indicate that the two-body forces in nuclear matter are
in fact much, weaker and long-ranged and can lead in
an excellent approximation to a uniform Hartree field
acting on the nucleons. The origin of this effect might
be, for example, a strongly nonlinear behavior of the
meson fields so that a very large damping eGect modifies
and smooths out the forces in nuclear matter. This
eGect can arise from many-body forces or from a non-
linearity in the meson field equations. In either case the
effective potential felt by one nucleon would not have
the rapidly varying spatial dependence which would
result if the two-body forces remained strong, and a
uniform potential would be a good approximation. A
direct consequence would then be that the nuclear wave
function would be weakly correlated, in disagreement
with the high-energy experiments we are analyzing. It
is also perhaps worth commenting here that the
theoretical expectations for the character of the two-
body and many-body interactions also strongly suggest
that the strong two-body forces are still effective in a
medium of nuclear density.
Thus we must adopt a picture of strong two-body

nuclear potentials and modify our views of the shell
model. The concepts and techniques which we have
developed are discussed in detail in other papers'; the
essential points may be summarized in the following
way. We require that the shell model (or independent
particle) wave function be a description not of nuclear
motion but of a "collective particle" motion, the actual
nucleon wave function being generated from the "shell
model" wave function by a transformation. This trans-
formation has (among other effects) the effect of
introducing correlations and hence high momentum com-
ponents into the wave function. Under certain condi-
tions the behavior of the shell model "particles" is very
nucleon-like, but this approximate identification is not
generally valid. We see, in fact, a complete breakdown
of the approximate description in the region of strong
correlations or high momenta, where the departure of
the simple shell model states from actual nuclear states
becomes particularly marked. Stated in other terms, a
consequence of our description of the nucleus is that the
departure of shell model states from nuclear states is
not very appreciable if observations of the state are

To explain 
the data

Independent 
particle model

Momentum distributions
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meson capture or as a member of the deuteron in
deuteron pickup, will usually be associated with the
ejection of another fast nucleon which was originally
paired with the directly ejected particle. Thus the
process corresponds to ejection of a fast pair of nucleons
from the ground state, with the residual nucleus only
weakly excited. This assumption (or a stronger assump-
tion) is explicit or implicit in the theory of all the high-
energy processes we have considered.
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development of the theory, if the ground-state function
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vanish in the former case or be very small in the latter
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about this aspect of the wave function. Before pro-
ceeding to the theory of these processes, we shall first
"Byfield, Kessler, and Lederman, Phys. Rev. 86, 17 (1952);

see also reference 16.The effect of correlations involving more than
two nucleons will become apparent only in the high-energy tail
of the spectrum of the ejected nucleons, this will not influence
appreciably the total cross sections of the processes we consider.

make some brief remarks on the nature of the ground-
state wave function and in particular on our inter-
pretation of the shell model and its reconciliation with
the simultaneous success of the shell model and with
the high-energy phenomena which interest us.
It is well known from both experiment and theory

that the nucleon-nucleon interactions are strong and
short ranged. Consequently if the same forces act when
nucleons are immersed in a many-body medium, one
will very naturally expect to observe under appropriate
experimental conditions very appreciable correlations
in the nuclear wave function. On the other hand, the
success of the shell model has often been assumed to
indicate that the two-body forces in nuclear matter are
in fact much, weaker and long-ranged and can lead in
an excellent approximation to a uniform Hartree field
acting on the nucleons. The origin of this effect might
be, for example, a strongly nonlinear behavior of the
meson fields so that a very large damping eGect modifies
and smooths out the forces in nuclear matter. This
eGect can arise from many-body forces or from a non-
linearity in the meson field equations. In either case the
effective potential felt by one nucleon would not have
the rapidly varying spatial dependence which would
result if the two-body forces remained strong, and a
uniform potential would be a good approximation. A
direct consequence would then be that the nuclear wave
function would be weakly correlated, in disagreement
with the high-energy experiments we are analyzing. It
is also perhaps worth commenting here that the
theoretical expectations for the character of the two-
body and many-body interactions also strongly suggest
that the strong two-body forces are still effective in a
medium of nuclear density.
Thus we must adopt a picture of strong two-body

nuclear potentials and modify our views of the shell
model. The concepts and techniques which we have
developed are discussed in detail in other papers'; the
essential points may be summarized in the following
way. We require that the shell model (or independent
particle) wave function be a description not of nuclear
motion but of a "collective particle" motion, the actual
nucleon wave function being generated from the "shell
model" wave function by a transformation. This trans-
formation has (among other effects) the effect of
introducing correlations and hence high momentum com-
ponents into the wave function. Under certain condi-
tions the behavior of the shell model "particles" is very
nucleon-like, but this approximate identification is not
generally valid. We see, in fact, a complete breakdown
of the approximate description in the region of strong
correlations or high momenta, where the departure of
the simple shell model states from actual nuclear states
becomes particularly marked. Stated in other terms, a
consequence of our description of the nucleus is that the
departure of shell model states from nuclear states is
not very appreciable if observations of the state are

To explain 
the data

Independent 
particle model

Momentum distributions

Ψ(k1, k2, k3, . . . , kA) ∼ ϕ(k1 − k2) χA(K12, k3, …, kA)

Key configurations
in Brueckner’s analysis:

This is a short-range 
correlation or SRC
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Gaute Hagen, DNP 2016

A = 40 in ~2040!

Realistic: BE’s within 5% and
starts from NN + 3N forces
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Ab Initio with low-resolution NN + NNN
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Ab Initio with low-resolution NN + NNN

Gaute Hagen, DNP 2016

Realistic: BE’s within 5% and
starts from NN + 3N forces
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Ab Initio with low-resolution NN + NNN

Gaute Hagen, DNP 2016

Realistic: BE’s within 5% and
starts from NN + 3N forces

 * low resolution interactions (chiral EFT, RG) enable 
polynomial scaling methods (Coupled cluster, IM-SRG, MBPT,…)
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Modern SRC Phenomenology (2000’s - present)

Experiments at BNL and 
JLab to detect knocked-out 
nucleons from an SRC pair



9
Extended Data Fig. 1 | SRC pair breakup. Diagrammatic representation and 
four-momentum kinematics of the two-nucleon knockout A(e, e′Np) reaction 
within the SRC model. The dashed red lines represent off-shell particles and 
solid black lines represent detected particles. The A−2 system is undetected.

Kinematics chosen to minimize ambiguities from MECs, FSI, etc. 

SRC pair from
hard interaction

Modern SRC Phenomenology (2000’s - present)

Experiments at BNL and 
JLab to detect knocked-out 
nucleons from an SRC pair
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Modern SRC Phenomenology (2000’s - present)

Experiments at BNL and 
JLab to detect knocked-out 
nucleons from an SRC pair

~kF

A-1

p
n

A-2

Interpretation (high resolution picture)

2 regions of momenta in nuclei

~ 20% of nucleons in SRC pairs
~ 70% of KE from SRC pairs
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Modern SRC Phenomenology (2000’s - present)

Fomin et al., Phys. Rev. Lett. 108 (2012)

1) Universal high-momentum tails

inclusive ratios a2(A) =
2

A

�A(xB , Q2)

�d(xB , Q2)



10

Modern SRC Phenomenology (2000’s - present)

Fomin et al., Phys. Rev. Lett. 108 (2012)

1) Universal high-momentum tails

inclusive ratios a2(A) =
2

A

�A(xB , Q2)

�d(xB , Q2)

SRC interpretation:

NN interaction scatters pair p1,p2 < kF

to intermediate-state momenta >> kF 

which are then knocked out by photon
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Modern SRC Phenomenology (2000’s - present)

Fomin et al., Phys. Rev. Lett. 108 (2012)

1) Universal high-momentum tails

inclusive ratios a2(A) =
2

A

�A(xB , Q2)

�d(xB , Q2)

plateaus in x => universal (all nuclei) high-q
                        momentum distributions

∼
nA(q > kF)
nd(q > kF)
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
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late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
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component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
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a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton

Wiringa et al., PRC (2014)
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Fomin et al., Phys. Rev. Lett. 108 (2012)

1) Universal high-momentum tails

inclusive ratios a2(A) =
2

A

�A(xB , Q2)

�d(xB , Q2)

plateaus in x => universal (all nuclei) high-q
                        momentum distributions

relative plateau height => relative prob. of
                                      finding 2N SRC 

∼
nA(q > kF)
nd(q > kF)
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3) np dominance at intermediate (300-500 MeV) relative momenta

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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4) transition to scalar counting at higher relative momentum   
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,

np dominance goes away at high momenta => probe repulsive core

fraction of SRC pairs (nn,np,pp) agrees with naive pair counting 
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is the nucleon mass, while ~q and ! are the 3-momentum
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respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.
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tron candidate in the TOF counters. We only considered
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details on the event selection and background subtraction
can be found in the online supplementary materials.
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selection criteria do not place any angular requirements,
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ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
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np dominance goes away at high momenta => probe repulsive core

fraction of SRC pairs (nn,np,pp) agrees with naive pair counting 
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à excess neutrons correlate with core protons

Correlation Probability: 
Neutrons saturate Protons grow

Duer Nature (2018) Duer Nature (2018)

Protons ‘Speed-Up’ In Neutron-Rich Nuclei
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2

GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >
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tentials are supported by 3N forces (UX [43] and the
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provide a good description of all nuclei considered in this
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A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from
two-body zero energy wf ϕ

5

Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
(q)/npn

4He
(q) cal-

culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free

But !NN is scale and 
scheme dependent. Ratios 
are independent but only 
probe “mean field” part
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Q: How to reconcile/connect 
low-and high-resolution

pictures?

A: RG/OPE techniques



RG in low energy nuclear physics

17
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k

λ
0

λ
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k’

k

SRG

Integrate out momenta  

preserve physics up to 

k > Λ

Λ

Unitary RG  (“Similarity Renormalization Group” 

       

preserves all physics (unitary) if no approximations 

low E states =>    highly suppressed 

H(λ) = U(λ)HU†(λ) O(λ) = U(λ)OU†(λ)

k ≳ λ

Bogner, Furnstahl, Schwenk Prog. Part. Nucl. Phys. 2010  
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• Goal: Extract nuclear properties 
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Bridging structure and reactions

• Goal: Extract nuclear properties 
from experiments and predict 
them from theory 

•                                       d

• Factorization to isolate 
components and extract 
process-independent 
properties 
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d�

d⌦
/

��h f | bO(q)| ii
��2

e.g., nucleon knockout reaction

hard scale
factorization

structure reaction

h f ||{z}
structure

reactionz}|{
bO(q) | ii|{z}

structure

= h f |U�U
†
�
bO(q)U�U

†
�| ii = h �

f ||{z}
structure(�)

reaction(�)
z }| {
bO�(q) | �

i i|{z}
structure(�)

Factorization is scale-dependent (not unique)!!



Analogy with DIS in QCD
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 cross section



Analogy with DIS in QCD

• Separation not unique, depends on 
the scale μf

• Form factor F2 independent of μf but 
pieces not

• fa(x, μf) runs with μf2 = Q2, but is 
process independent
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Analogy with DIS in QCD

• Separation not unique, depends on 
the scale μf

• Form factor F2 independent of μf but 
pieces not

• fa(x, μf) runs with μf2 = Q2, but is 
process independent

• What is the scale/scheme dependence 
of extracted props?

• Extract at one scale (e.g., to minimize 
FSI) and evolve to another? 

• Scale/scheme dependence of 
interpretations? Are some better?

• Structure of evolved 
operators?

19

hard scale
factorization

long-distance
parton density

short-distance
Wilson coefficient

High-E QCD Low-E Nuclear

Observable:
cross section

Structure model:
spectroscopic factor

Reaction model:
 single-particle
 cross section

Open Questions



High-q operators evolved to low-resolution scales
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Λ

Λ0

q

p

RG preserves long 
distance structure 

Consider low-k components of low-E wf’s for A=2. 

 ⇤0
↵ (p) ⇡ Z⇤ 

⇤
↵(p)

Anderson et al., PRC 82 (2010)

SKB and Roscher, PRC 86 (2012)
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Λ

Λ0

q

p

Scale separation (Eα << Λ2 << q2)

Consider high-k components of low-E wf’s for A=2. 

 ⇤0
↵ (q) ⇡ �(q;⇤)

Z ⇤

0
d3pZ⇤ 

⇤
↵(p) + ⌘(q;⇤)

Z ⇤

0
d3pp2Z⇤ 

⇤
↵(p) · · ·

Anderson et al., PRC 82 (2010)

SKB and Roscher, PRC 86 (2012)

High-q operators evolved to low-resolution scales
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p

Scale separation (Eα << Λ2 << q2)

Consider high-k components of low-E wf’s for A=2. 

 ⇤0
↵ (q) ⇡ �(q;⇤)

Z ⇤

0
d3pZ⇤ 

⇤
↵(p) + ⌘(q;⇤)

Z ⇤

0
d3pp2Z⇤ 

⇤
↵(p) · · ·

Anderson et al., PRC 82 (2010)

SKB and Roscher, PRC 86 (2012)

Operator Product Expansion
of wave function a-la Lepage

�(q;⇤) = �
Z ⇤0

⇤
dq0 hq| 1

QH⇤0Q
|q0iV ⇤0(q0

, 0)

�(q;⇤) = �
Z ⇤0

⇤
dq0 hq| 1

QH⇤0Q
|q0i @

2

@p2
V

⇤0(q0
,p)

����
p=0

State-independent
Wilson Coefficients

High-q operators evolved to low-resolution scales
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h ⇤0
↵ | bO⇤0 | ⇤0
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0
dp
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⇤
dq  

⇤0⇤
↵ (p)O(p, q) ⇤0

↵ (q)

+

Z ⇤0

⇤
dq

Z ⇤

0
dp 

⇤0⇤
↵ (q)O(q, p) ⇤0

↵ (p) +

Z ⇤0

⇤
dq

Z ⇤0

⇤
dq

0
 
⇤0⇤
↵ (q)O(q, q0) ⇤0

↵ (q0)

High-q operators evolved to low-resolution scales
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 ⇤0
↵ (p) ⇡ Z⇤ 

⇤
↵(p)

 ⇤0
↵ (q) ⇡ �(q;⇤)

Z ⇤

0
d3pZ⇤ 

⇤
↵(p) + · · ·

Now use:

OPE for w.f.’s

O(q, p) ⇡ O(q, 0) + · · ·

IR structure unaltered

Scale separation

High-q operators evolved to low-resolution scales
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h ⇤0
↵ | bO⇤0 | ⇤0

↵ i ⇡ Z
2
⇤h ⇤

↵ | bO⇤0 | ⇤
↵i+ g

(0)(⇤) h ⇤
↵ |�(3)(r)| ⇤

↵i + · · ·

state-independent
high-q physics

depends on operator

state dependent
soft m.e. (low-k)

same for all high-q operators

High-q operators evolved to low-resolution scales
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h ⇤0
↵ | bO⇤0 | ⇤0

↵ i ⇡ Z
2
⇤h ⇤

↵ | bO⇤0 | ⇤
↵i+ g

(0)(⇤) h ⇤
↵ |�(3)(r)| ⇤

↵i + · · ·

state-independent
high-q physics

depends on operator

state dependent
soft m.e. (low-k)

same for all high-q operators

g
(0)(⇤) ⌘ 2Z2

⇤

Z ⇤0

⇤
dq̃ O(0, q)�(q;⇤)

+Z
2
⇤

Z ⇤0

⇤
dq̃

Z ⇤0

⇤
dq̃

0
�
⇤(q;⇤)O(q, q0)�(q0;⇤)

E.g.,

Generically: bO⇤ = Z
2
⇤
bO⇤0 + g

(0)(⇤) �(r) + g
(2)(⇤)r2

�(r) + · · ·

High-q operators evolved to low-resolution scales
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How does an operator that probes high-momentum w.f. 
components look in a low-momentum effective theory?

h ⇤0
↵ | bO⇤0 | ⇤0

↵ i ⇡ Z
2
⇤h ⇤

↵ | bO⇤0 | ⇤
↵i+ g

(0)(⇤) h ⇤
↵ |�(3)(r)| ⇤

↵i + · · ·

P⇤O⇤0P⇤ = 0= 0 since

SKB and Roscher, PRC 86 (2012)

Tropiano, SKB, Furnstahl (in progress)

High-q operators evolved to low-resolution scales
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How does an operator that probes high-momentum w.f. 
components look in a low-momentum effective theory?

h ⇤0
↵ | bO⇤0 | ⇤0

↵ i ⇡ Z
2
⇤h ⇤

↵ | bO⇤0 | ⇤
↵i+ g

(0)(⇤) h ⇤
↵ |�(3)(r)| ⇤

↵i + · · ·

P⇤O⇤0P⇤ = 0= 0 since

h ⇤0
↵ |a†qaq| ⇤0

↵ i ⇡ �2(q;⇤)Z2
⇤|h ⇤

↵ |�(r)| ⇤
↵i|2

E.g., momentum distribution for q >> Λ

low-E states have the same large-q tails if leading
OPE term dominates

Generalize to arbitrary A-body states 
SKB and Roscher, PRC 86 (2012)

Tropiano, SKB, Furnstahl (in progress)

High-q operators evolved to low-resolution scales
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Ex1: momentum distribution  (Λ << q < Λ0):
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Ex2: static structure factor  (Λ << q < Λ0):

High-q operators evolved to low-resolution scales
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Ex2: static structure factor  (Λ << q < Λ0):

- hard (high q) physics
- Universal (state-indep)
- depends on probe
- fixed from few-body

- soft (low-k) m.e.
- same for all high-q probes
- A-dependent scale factor

X

High-q operators evolved to low-resolution scales
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Ex2: static structure factor  (Λ << q < Λ0):

- hard (high q) physics
- Universal (state-indep)
- depends on probe
- fixed from few-body

- soft (low-k) m.e.
- same for all high-q probes
- A-dependent scale factor

X

links few- and A-body systems ( “derives” the GCF)


Correlations/scaling for 2 observables w/same leading OPE


Subleading OPE ==> deviations from scaling calculable in principle?
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton
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in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton
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Fig. 11. (Color online) The proton momentum distributions
in all T = 0 nuclei from A = 2–12 calculated by Wiringa et al.
using their variational Monte Carlo theory in ref. [153].

Fig. 12. (Color online) The un-normalized population of nu-
cleons in 12C up to momentum k (blue) (Courtesy of B.J. Cai,
2015) from the variational Monte Carlo prediction shown in
fig. 11.

indicate that about 25% nucleons are in the HMT in SNM,
while calculations are still model dependent. For exam-
ple, the Self-Consistent Green’s Function (SCGF) theory
using the Av18 interaction predicts a 11–13% HMT for
SNM at saturation density ρ0 [156, 157], while Bruckner-
Hartree-Fock calculations predict a HMT between about
10% using the N3LO450 to over 20% using the Av18, Paris
or Nij93 interactions [158, 159]. Thus, there is a qualita-
tive agreement but quantitative disagreement regarding
the size of the HMT even in SNM.

Significant progresses have been made in understand-
ing the source and features of the nucleon momentum dis-
tributions in finite nuclei especially from electron-nucleus
scattering experiments during the last two decades [83,
160–170], albeit there are still controversies especially
from those experiments using nuclear probes, see, e.g.,
refs. [171–175]. Theoretically, large uncertainties exist in

quantifying the shape, size and isospin dependence of
the HMT of single-nucleon momentum distributions in
neutron-rich matter, for a recent review, see, e.g., ref. [27].
While some strong and consistent indications about the
isospin dependence of the HMT have been found in elec-
tron scattering experiments [176], quantitative predictions
are still model dependent. More specifically, based on the
observation that the SRC strength of a neutron-proton
pair is about 18–20 times that of two protons, the HMT
in PNM was estimated to be about 1–2% [177]. How-
ever, some theories predict a significantly higher HMT in
PNM. For example, the SCGF predicted a 4–5% HMT
in PNM [156, 157]. More specifically, based on the lad-
der SCGF approach [157], Rios, Polls and Dickhoff have
shown clearly that the momentum distribution of neutrons
with respect to that of protons depends strongly on the
interactions used especially in neutron-rich matter. The
integrated strength defined as [157]

φ2(ki, kf ) =
1

π2ρτ

∫ kf

ki

dk k2nτ (k) (30)

can be used to quantify the population in the momentum
range between ki and kf . Shown in fig. 13 are the values
of φ2(ki, kf ) in the three windows of momentum. As dis-
cussed in [157], the low-momentum region, from ki = 0
to kf = 400MeV, includes depletion effects as well as the
shifts in the Fermi momenta, the middle panels represent
approximately the tensor-dominated region while the bot-
tom panels illustrate the remaining strength in the very
high-momentum region above 850MeV where three-body
short-range correlations may play a significant role.

It is seen from fig. 13 clearly that as the isospin-
asymmetry increases, higher fractions of protons popu-
late the HMT while in the low-momentum region neutrons
dominate. Most importantly, the integrated strength espe-
cially at high momentum is very interaction dependent. In
particular, either turning off the tensor or high-momentum
component of the interaction leads to significant reduc-
tions of the HMT. The relative populations of the HMT
is also strongly interaction dependent. Moreover, within
the SCGF approach it was also shown that the shape of
the HMT is also model dependent. The HMT does not
always scale as 1/k4 as predicted in some other models
discussed in detail in ref. [27]. Nevertheless, the SCGF
and all other models qualitatively confirm the deuteron-
like neutron-proton dominance picture illustrated in fig. 14
for the creation of the HMT. In neutron-rich systems, neu-
trons are in the majority. The minority protons have a rel-
atively larger chance of finding a neutron partner to form
a T = 0 pair for the tensor force to be active. Within
the neutron-proton dominance approximation, there are
equal number of neutrons and protons in the HMT. Thus,
a larger fraction of protons is in the HMT. An inter-
esting example from data mining of electron-nucleus and
proton-nucleus scattering experiments [176, 178] is shown
in fig. 15. The measured fraction of high-momentum pro-
tons relative to that of 12C is shown as a function of the
isospin-asymmetry (N −Z)/A. It is seen clearly that from
neutron-poor to neutron-rich systems the relative proton
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3) np dominance at intermediate (300-500 MeV) relative momenta

These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
reactions, as well as from previous (p,2pn) data. The results and references are listed in table S1.

Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.
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Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
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Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,
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These kinematic settings covered (e,e'p) missing
momenta, which is the momentum of the
undetected particles, in the range from 300 to
600 MeV/c, with overlap between the different
settings. For highly correlated pairs, the missing
momentum of the (e,e'p) reaction is balanced
almost entirely by a single recoiling nucleon,
whereas for a typical uncorrelated (e,e'p) event,
themissingmomentum is balanced by the sum of
many recoiling nucleons. In a partonic picture, xB
is the fraction of the nucleon momentum carried
by the struck quark. Hence, when xB > 1, the
struck quark has more momentum than the entire
nucleon, which points to nucleon correlation. To
detect correlated recoiling protons, a large
acceptance spectrometer (“BigBite”) was placed
at an angle of 99° to the beam direction and 1.1
m from the target. To detect correlated recoiling
neutrons, a neutron array was placed directly
behind the BigBite spectrometer at a distance of 6
m from the target. Details of these custom proton
and neutron detectors can be found in the
supporting online material (16).

The electronics for the experiment were set
up so that for every 12C(e,e'p) event in the HRS
spectrometers, we read out the BigBite and
neutron-detector electronics; thus, we could deter-
mine the 12C(e,e'pp)/12C(e,e'p) and the 12C(e,e'pn)/
12C(e,e'p) ratios. For the 12C(e,e'pp)/12C(e,e'p)
ratio, we found that 9.5 ± 2% of the (e,e'p) events
had an associated recoiling proton, as reported in
(12). Taking into account the finite acceptance of
the neutron detector [using the same procedure
as with the proton detector (12)] and the neutron
detection efficency, we found that 96 ± 22% of
the (e,e'p) events with a missing momentum above
300 MeV/c had a recoiling neutron. This result
agrees with a hadron beam measurement of
(p,2pn)/(p,2p), in which 92 ± 18% of the (p,2p)
events with a missing momentum above the Fermi

momentum of 275 MeV/c were found to have a
single recoilingneutroncarrying themomentum(11).

Because we collected the recoiling proton
12C(e,e'pp) and neutron 12C(e,e'pn) data simulta-
neously with detection systems covering nearly
identical solid angles, we could also directly
determine the ratio of 12C(e,e'pn)/12C(e,e'pp). In
this scheme, many of the systematic factors
needed to compare the rates of the 12C(e,e'pn)
and 12C(e,e'pp) reactions canceled out. Correct-
ing only for detector efficiencies, we determined
that this ratio was 8.1 ± 2.2. To estimate the effect
of final-state interactions (that is, reactions that
happen after the initial scattering), we assumed
that the attenuations of the recoiling protons and
neutrons were almost equal. In this case, the only
correction related to final-state interactions of the
measured 12C(e,e'pn)/12C(e,e'pp) ratio is due to a
single-charge exchange. Because the measured
(e,e'pn) rate is about an order of magnitude larger
than the (e,e'pp) rate, (e,e'pn) reactions followed
by a single-charge exchange [and hence detected
as (e,e'pp)] dominated and reduced the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Using the Glauber
approximation (17), we estimated that this effect
was 11%. Taking this into account, the corrected
experimental ratio for 12C(e,e'pn)/12C(e,e'pp) was
9.0 ± 2.5.

To deduce the ratio of p-n to p-p SRC pairs in
the ground state of 12C, we used the measured
12C(e,e'pn)/12C(e,e'pp) ratio. Because we used
(e,e'p) events to search for SRC nucleon pairs, the
probability of detecting p-p pairs was twice that
of p-n pairs; thus, we conclude that the ratio of
p-n/p-p pairs in the 12C ground state is 18 ± 5
(Fig. 2). To get a comprehensive picture of the
structure of 12C, we combined the pair faction
results with the inclusive 12C(e,e') measurements
(4, 5, 14) and found that approximately 20% of
the nucleons in 12C form SRC pairs, consistent

with the depletion seen in the spectroscopy ex-
periments (1, 2). As shown in Fig. 3, the com-
bined results indicate that 80% of the nucleons in
the 12C nucleus acted independently or as de-
scribed within the shell model, whereas for the
20% of correlated pairs, 90 ± 10% were in the
form of p-n SRC pairs; 5 ± 1.5%were in the form
of p-p SRC pairs; and, by isospin symmetry, we
inferred that 5 ± 1.5% were in the form of SRC
n-n pairs. The dominance of the p-n over p-p
SRC pairs is a clear consequence of the nucleon-
nucleon tensor force. Calculations of this effect
(18,19) indicate that it is robust anddoes not depend
on the exact parameterization of the nucleon-
nucleon force, the type of the nucleus, or the
exact ground-state wave function used to de-
scribe the nucleons.

If neutron stars consisted only of neutrons, the
relatively weak n-n short-range interaction would
mean that they could be reasonably well approxi-
mated as an ideal Fermi gas, with only perturba-
tive corrections. However, theoretical analysis of
neutrino cooling data indicates that neutron stars
contain about 5 to 10% protons and electrons in
the first central layers (20–22). The strong p-n
short-range interaction reported here suggests
that momentum distribution for the protons and
neutrons in neutron stars will be substantially
different from that characteristic of an ideal Fermi
gas. A theoretical calculation that takes into
account the p-n correlation effect at relevant
neutron star densities and realistic proton concen-
tration shows the correlation effect on the mo-
mentum distribution of the protons and the
neutrons (23). We therefore speculate that the
small concentration of protons inside neutron
stars might have a disproportionately large effect
that needs to be addressed in realistic descriptions
of neutron stars.

References and Notes
1. L. Lapikas, Nucl. Phys. A. 553, 297 (1993).
2. J. Kelly, Adv. Nucl. Phys. 23, 75 (1996).
3. W. H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52,

377 (2004).
4. K. S. Egiyan et al., Phys. Rev. C Nucl. Phys. 68, 014313

(2003).

Missing Momentum [GeV/c]

0.3 0.4 0.5 0.6

S
R

C
 P

ai
r 

Fr
ac

tio
n 

(%
)

10

2
10

C(e,e’p) ] /212C(e,e’pp) /12pp/2N from [

C(e,e’p)12C(e,e’pn) /12np/2N from 

C(p,2p)12C(p,2pn) /12np/2N from 

C(e,e’pn) ] /212C(e,e’pp) /12pp/np from [

Fig. 2. The fractions of correlated pair combinations in carbon as obtained from the (e,e'pp) and (e,e'pn)
reactions, as well as from previous (p,2pn) data. The results and references are listed in table S1.

Fig. 3. The average fraction of nucleons in the
various initial-state configurations of 12C.
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FIG. 3: Left: The measured fractions of triple coincidence events (C(e, e0pN)/C(e, e0p)), compared with GCF predictions
accounting for the variety of e↵ects that influence the measurement (e.g. CLAS detector acceptance, e�ciency, and resolution,
FSIs including SCX, and the event-selection procedure). The C(e, e0pp)/C(e, e0p) data (blue triangles) are taken from Ref. [10],
while the C(e, e0pn)/C(e, e0p) data (red circles) are from this work. Right: The GCF prediction for the ground-state fractions
of pn and pp pairs as a function of pair relative momentum, calculated using the AV18 and N2LO NN interactions. The dashed
line marks the scalar limit, see text for details. The width of the GCF calculation bands shows their 68% confidence interval
due to uncertainties on the model parameters.

e�ciency, and momentum reconstruction resolution.

Similar to previous SRC studies [6–10], we considered
events with scattered electron kinematics of Q2 ⌘ |~q|2 �
!2 > 1.5 GeV2/c2 and xB ⌘ Q2/2mN! > 1.1, wheremN

is the nucleon mass, while ~q and ! are the 3-momentum
and energy transferred to the nucleus by the electron,
respectively. Assuming the electron scatters from a single
nucleon that does not reinteract as it leaves the nucleus
with momentum ~pf , the initial nucleon momentum ~pi
can be approximated as equal to the measured missing-
momentum: ~pi ⇡ ~pmiss ⌘ ~pf � ~q.

If the struck nucleon is part of a 2N -SRC pair, we
interpret the reaction through the SRC break-up model
where a correlated partner nucleon is assumed to exist
as an on-shell spectator carrying momentum ~precoil. For
an SRC pair with center-of-mass momentum ~pCM ⌘ ~pi+
~precoil, the residual A � 2 system will carry momentum
�~pCM , and may carry excitation energy denoted here by
E⇤. We also define the missing energy, Emiss ⌘ mN �
mA +

p
(! +mA � Ef )2 � p2miss, where mA is the mass

of the target nucleus and Ef is the energy of the leading
proton detected in the final state.

Following previous works [6–10], we selected 12C(e, e0p)
events in kinematics where the dominant reaction is
the scattering o↵ SRC pairs. Specifically, 12C(e, e0p)
events were required to have xB > 1.1 which sup-
presses contributions from isobar currents, 300 < pmiss <
1000 MeV/c that enhances contributions from interac-
tions with high initial momentum nucleons, an angle be-
tween ~pf and ~q smaller than 25�, 0.62 < |~pf |/|~q| < 0.96
that allows identifying a leading nucleon, and Mmiss ⌘

q
(qµ � pµf + 2mN )2 < 1.1 GeV/c2 that suppress reso-

nance productions.

Triple coincidence 12C(e, e0pn) events were selected
from the 12C(e, e0p) event sample by requiring a neu-
tron candidate in the TOF counters. We only considered
neutrons with momentum between 300 and 1000 MeV/c.
The triple coincidence signal sits on top of a similar-size
uncorrelated random background. This background is
uniformly random in neutron hit time, allowing it to be
estimated from o↵-time neutrons and subtracted. More
details on the event selection and background subtraction
can be found in the online supplementary materials.

Figure 1 shows the cosine of the angle between ~pmiss

and ~precoil for 12C(e, e0pn) events after random coinci-
dence background subtraction. While the recoil neutron
selection criteria do not place any angular requirements,
the measured distribution shows the back-to-back corre-
lation characteristic of SRC breakup events.

The measured distributions are compared to theoret-
ical predictions based on the GCF [37, 38, 42, 49] us-
ing the local AV18 [57] and N2LO(1.0) [58] NN interac-
tion models. The GCF assumes scale-separation between
the short-distance interactions within an SRC pair, and
the long-range interactions between the pair and the rest
of the nucleus, as well as their mutual separation from
the ultra-short distance scale associated with the high-
energy virtual photon probe. This scale separation per-
mits a factorized approximation for describing the scat-
tering cross-section, in which the hard break-up of an
SRC pair proceeds via a reaction in which the virtual
photon is absorbed by a single nucleon in an SRC pair,

Ratio of evolved high-mom. distributions
in a low-mom. state (insensitive to details!)
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GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from
two-body zero energy wf ϕ
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Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
(q)/npn

4He
(q) cal-

culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free

2

GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from
two-body zero energy wf ϕ

But !NN is scale and 
scheme dependent. Ratios 
are independent but only 
probe “mean field” part
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Ref. [35] showed that the relative abundance of short-
distance NN pairs in nucleus A relative to deuterium
(i.e., ⇢A(r)/⇢d(r) for r ! 0, where ⇢A(r) includes all
NN pairs) is insensitive to the nuclear interaction, and
is numerically consistent with the experimental values
of a2(A/d) for all nuclei considered. This raised doubts
about the sensitivity of a2(A/d) measurements to the
NN+3N interaction. However, the assumed connection
between the a2(A/d) data analyzed in momentum space
and the calculated pair-distance distributions needed to
be justified.

We bolster and extend these observations by showing
that the calculated contact ratios are independent of the
NN+3N interaction in both coordinate and momentum
space and for each pair quantum state separately. This is
consistent with previous calculations that found the rela-
tive abundance of SRC pairs to be a mean-field property
of the nuclear medium, with only their specific proper-
ties (isospin structure, relative momentum distribution,
etc.) being determined by the short distance part of the
NN interaction [56–60]. Thus our results raise even more
doubts about the connection between the a2(A/d) mea-
surements and the NN+3N interaction.

An alternate method for probing SRCs is by measuring
exclusive two-nucleon knockout reactions A(e, e0NN) [1,
3–10]. Fig. 5 shows the ratio of pp to pn pairs in 4

He, as
a function of the pair relative momenta, extracted from
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Figure 4: Ratios of spin-1 pn contact terms for different nu-
clei to deuterium (top) or 4He (middle), and of spin-0 pp con-
tact terms for different nuclei to 4He (bottom). The contact
terms ratios were extracted using different NN+3N poten-
tials in both coordinate (squares) and momentum (circles)
space. The contact values for 3H in the spin-0 pp panel corre-
sponds to Cs=0

nn , as there are no pp pairs in this nucleus. See
text for details.
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Figure 5: Ratio of pp-to-pn back-to-back pairs in 4He
as a function of pair relative momentum q, npp

A (q,Q =
0)/npn

A (q,Q = 0), for different NN+3N potentials, compared
with the experimental extractions of Ref. [7] using (e, e0pp)
and (e, e0pn) data. See text for details.

(e, e0pp) and (e, e0pn) data [7]. The data are compared
with two-nucleon distribution ratios npp

4He
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culated at zero c.m. pair momentum (Q = 0) using differ-
ent interaction models. Requiring low or zero c.m. mo-
mentum (back-to-back pairs) reduces contributions from
uncorrelated pairs [33], allowing to meaningfully compare
SRC calculations and measurements. The pp to pn ratio
calculated with the AV4’+UIXc interaction is inconsis-
tent with the other calculations and with the experimen-
tal data, due to its lack of a tensor force. Thus, exclusive
observables can be sensitive to short-distance properties
of the nuclear interaction.

Lastly, Refs. [61, 62] claimed there exists a difference
between the scaling of SRC pairs with small separation
and high relative momenta, and that of pairs with small
separation but any relative momenta. The fact that both
coordinate- and momentum-space contacts exhibit the
same scaling shows that these speculations are inconsis-
tent with QMC wave functions [63].

ABSOLUTE CONTACTS

Having observed that the ratio of contact terms for
heavier to light nuclei is both scale and scheme inde-
pendent, and is the same for both small-separation and
high-momentum pairs, we now examine the individual
contacts.

Fig. 6 (top panel) shows the contacts extracted by fit-
ting Eq. (1) to the individual two-nucleon QMC densi-
ties for different nuclei in either coordinate or momentum
space. In contrast to the contact ratios, here the univer-
sal functions do not cancel, so we fixed the normalization
of |'↵

NN (q)|2 so that its integral above 1.3 fm�1
(⇡ kF)

equals one. This defines the normalization of |'↵
NN (r)|2

via a Fourier transform, leaving CNN,↵
A as the only free
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GENERALIZED CONTACT FORMALISM AND
QUANTUM MONTE CARLO CALCULATIONS

The GCF is an effective model that provides a fac-
torized approximation for the short-distance (small-r)
and high-momentum (large-k) components of the nuclear
many-body wave function. Its derivation is rooted in the
scale separation between the strong relative interaction of
nucleons in SRC pairs and their weaker interaction with
the residual A� 2 nuclear system [32, 33, 48]. Using this
scale separation, the two-nucleon density in either coordi-
nate or momentum space (i.e., the probability of finding
two nucleons with separation r or relative momentum q)
can be expressed at small separation or high momentum
as [33]:

⇢NN,↵
A (r) = CNN,↵

A ⇥ |'↵
NN (r)|2,

nNN,↵
A (q) = CNN,↵

A ⇥ |'↵
NN (q)|2, (1)

where A denotes the nucleus, NN denotes the nucleon
pair being considered (pn, pp, nn), and ↵ stands for the
nucleon-pair quantum state (spin 0 or 1). CNN,↵

A are
nucleus-dependent scaling coefficients, referred to as “nu-
clear contact terms”, and '↵

NN are universal two-body
wave functions that are given by the zero-energy solution
of the two-body Schrödinger equation for the NN pair
in the state ↵. '↵

NN are universal in the sense that they
are nucleus independent, but they do strongly depend on
the NN interaction model, see Fig. 1.

While the normalizations of two-nucleon densities are
well defined by the total number of nucleons in the
nucleus, the individual normalizations of CNN,↵

A and
|'↵

NN |2 are not. We therefore choose to normalize
|'↵

NN (q)|2 such that its integral above 1.3 fm�1
(⇡ kF)

equals unity [33]. '↵
NN (r) is the Fourier transform of

'↵
NN (q). Thus, the normalization of one function auto-

matically defines the normalization of the other.
We note that an important feature of the GCF is the

equivalence between short distance and high momentum.
This is built into Eq. (1) by the use of the same contact
terms CNN,↵

A for both densities.
Previous studies of the GCF [33] showed the valid-

ity of Eq. (1) using QMC calculations of ⇢NN,↵
A (r) and

nNN,↵
A (q) for A = 2 to 40 using the AV18+UX interac-

tion. More recently, the authors of Refs. [40, 49] ana-
lyzed QMC calculations of ⇢NN

A (r) using the same four
interactions studied here (although without separating
them into different spin-isospin channels), and showed
the first evidence for scale-and-scheme independence of
⇢NN
A (r)/⇢NN

d (r) ratios for short distances.
Here we extend these previous studies using new QMC

calculations of two-nucleon distributions in both coor-
dinate and momentum space, projected into different
spin-isospin channels, for different nuclei and using differ-
ent NN+3N potentials (AV18+UX, AV4’+UIXc, N2LO
(1.0 fm) and N2LO (1.2 fm)), see Table I.
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Figure 1: Universal two-body functions |'↵
NN |2 for spin-1 pn

(top) and spin-0 pp (bottom) pairs calculated in both coor-
dinate (left) and momentum (right) space for four different
NN potentials. See text for details.

The phenomenological AV18 [42] and AV4’ [44] poten-
tials are “hard interactions”, with a significant probabil-
ity for nucleons to have high momentum (k > 3 fm�1,
see Fig. 1). Their derivation is similar with AV4’ be-
ing a reprojection of AV18 onto the first four channels
that does not include the tensor interaction. Both po-
tentials are supported by 3N forces (UX [43] and the
central component of UIX, UIXc [35], respectively), that
provide a good description of all nuclei considered in this
work [30, 35, 37].

The N2LO interactions are fundamentally different, as
they are based on a chiral perturbation expansion up
to third order with local coordinate-space regulators at
distances of 1.0 and 1.2 fm [39, 45–47]. These regula-

Table I: QMC-calculated two-nucleon distributions for differ-
ent nuclei and NN+3N potentials. Checkmarks indicate cal-
culations used in the current study. All calculations are avail-
able for both coordinate and momentum space, except for
16O and 40Ca with AV18 (labeled with an asterisk below), for
which the UIX potential is used and results are only available
in coordinate space [37]. Calculations with the N2LO (1.2 fm)
potential for heavier systems are not considered in this work
due to the large regulator artifacts found for A � 12 (see
Ref. [39]).

AZ AV18+UX AV4’+UIXc N2LO(1.0fm) N2LO(1.2fm)

d
3H
3He
4He
6Li
12C –
16O ⇤ –
40Ca ⇤ – –

A-dep scale factors (“nuclear contacts”)  CA ∼ < χ |χ >

Universal (same all A, not VNN) shape from
two-body zero energy wf ϕ

But !NN is scale and 
scheme dependent. Ratios 
are independent but only 
probe “mean field” part

Contacts not RG invariant

CA =
Λ0

∑
K,k′ ,k

⟨ψ A
Λ0

|a†
K
2 +k

a†
K
2 −k

aK
2 −k′ 

aK
2 +k′ 

ψ A
Λ0

⟩ ⇒ f(Λ)
Λ

∑
K,k′ ,k

⟨ψ A
Λ |a†

K
2 +k

a†
K
2 −k

aK
2 −k′ 

aK
2 +k′ 

ψ A
Λ⟩

A-independent

…But ratios in different A approx. RG invariant
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S. More, SKB, R.J. Furnstahl, Phys. Rev. C 96 054004, (2017)




Test ground: 2H(e,e′p)n
• Simplest knockout process (no induced 3N forces/currents) dd

• Focus on longitudinal structure function fL

• ss

• Components (deuteron wf, transition operator, FSI) scale-dependent, 
total is not. 

• Are some resolutions “better” than others? E.g., in a given kinematics, 
can FSI be minimized with different choices of λ?? How do 
interpretations change with scale?
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Deuteron wave function evolution
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                                                                      especially for high-q processes?
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• For                              localized around outgoing p′
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Scale Dependence of Final State Interactions
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FSI sizable at large λ
but negligible at low-resolution!

Folklore:
 
shouldn’t hard processes
be complicated in low resolution
(λ << q) pictures?

Why are FSI so small at low λ
in these kinematics ?0 30 60 90 120 150 180
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Scale Dependence of Interpretations
• Analysis/interpretation of a reaction involves understanding 

which part of wave functions probed (highly scale dependent!)


• E.g., sensitivity to D-state w.f. in large q2 processes
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Scale Dependence of SRC Interpretation
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• Consider large q2 near threshold (small p′) for θ=0 in high-
resolution picture (COM frame of outgoing np)

Before After

photon only couples to proton

kp	kn	

q	

kn	

kp	



Scale Dependence of SRC Interpretation

38

• Consider large q2 near threshold (small p′) for θ=0 in high-
resolution picture (COM frame of outgoing np)

Before After

photon only couples to proton

kp	kn	

q	

kn	

kp	

∴ proton has large momentum  => initial large relative momentum


                                          (i.e., SRC pair) 
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• Consider large q2 near threshold (small p′) for θ=0 in low-
resolution picture (COM frame of outgoing np)

Before After

kp	kn	
q	 kp	

kn	
two-
body	
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• Consider large q2 near threshold (small p′) for θ=0 in low-
resolution picture (COM frame of outgoing np)

Before After

no large relative momentum in evolved deuteron wf


1-body current makes no contribution


∴ 2-body current mostly stops the low-relative momentum np pair  

kp	kn	
q	 kp	

kn	
two-
body	
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RG methods smoothly connect high- and low-resolution pictures. There 
is no “correct” picture (e.g., can reproduce SRC phenom. in a low 
resolution picture)


Interpretations vary with resolution scale (FSI, etc.), as do ease of 
calculations (simple wf’s + complicated currents vs. complicated wf’s + 
simple currents). Can we exploit this?


Can we use RG methods to connect SF’s in low-resolution shell model 
picture and SRCs in high-resolution picture?  


Can we use OPE + SRC/high-q measurements to extend reach of low-
resolution theories ?


Can we use simpler low-resolution wf's + OPE for to do high-q 
electron scattering in medium mass nuclei?


Summary/Questions



Extras
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Final-state wave function evolution
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Final-state wave function evolution

42

• Correlation “wound” at small r smoothed out under evolution

• Long-distance tail invariant (phase shifts preserved)
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Strongly-bound systems

Shell M

A. Gade et al., Phys. Rev. C 77, 044306 (2008) 

Other exclusive knock-out reactions [pictures from A. Gade]

Exclusive reactions, theory vs. experiment

One-nucleon knockout

residue moment distribution 
Æ ℓ-value of knocked-out n

• More than 50MeV/nucleon:
sudden approximation + eikonal approach (J.A. Tostevin, Surrey)

• Spectroscopic strengths
determined from the population of the residue with A-1

ℓ=0ℓ=2

P ||

d
p

s

Cross sections for the 
population of final states
Æ Spectroscopic strength

Compare measured to 
calculated cross sections 

Origin and systematics of R = σexp / σth < 1 
are not understood (includes e,e’p results)

One-nucleon knockout

residue moment distribution 
Æ ℓ-value of knocked-out n

• More than 50MeV/nucleon:
sudden approximation + eikonal approach (J.A. Tostevin, Surrey)

• Spectroscopic strengths
determined from the population of the residue with A-1

ℓ=0ℓ=2

P ||

d
p

s

Cross sections for the 
population of final states
Æ Spectroscopic strength

Compare measured to 
calculated cross sections 

Theoretical cross  section

Structure theory

Reaction theoryN
Theoretical cross section:

CoM correction – needed 
for CI SM with HO basis

A. E. L. Dieperink and T. de Forest, PRC 10, 533 (1974)
P.G. Hansen and J. A. Tostevin, 
Annu. Rev. Nucl. Sci. 53, 219 
(2003)

J. A. Tosetvin, J. Phys. G. 25, 
735 (1999)

diffrstrip ),(),(),( NspNspNsp SjSjSj
� spectator-core approximation to many-body eikonal theory
� (A-1) residue: at most elastically scattered
� S matrices as function of impact parameter from double-

folding approach to Glauber multiple-scattering theory (free 
nn np cross sections with Gaussian range parameters nn= 

np=0.5 fm. Real-to-imaginary ratios interpolated from tables 
in L. Ray, PRC 20, 1875 (1979) . 

� nucleon-residue relative wave functions: eigenfunctions of  
effective 2-body Hamiltonian containing a local potential with 
the depth adjusted to reproduce the separation energy
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Scale-dependent (RG) view of how these reactions are treated

• Analysis mixes a high-resolution reaction mechanism (single-
particle) with a low-resolution structure description.

• Theory is greater than experiment because missing induced 
current (e.g., 2-body for e−) does not exclude flux.

• Plan: use SRG on reaction operator here and exploit factorization
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Deuteron electrodisintegration kinematics


