Addressing Neutrino-Oscillation Physics
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A quantitative knowledge of o(E) and fs(E) is crucial to precisely extract v oscillation parameters



To study neutrinos we need nuclel

% Where does Nuclear Physics come into play

Number of Interactions = 4@»

Cross Section

# Targets
Neutrino Flux

Utilize heavy target in neutrino detectors to maximize interactions— understand nuclear structure
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_epton-nucleus cross section

Different reaction mechanisms contributing to lepton-nucleus cross section

—fixed value of the beam energy (monochromatic) Quasielastic scattering
on a nucleus:
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In neutrino experiments these contributions are not nicely separated



Outline of the talk

1st Part of the Presentation

A

do . :
/ 3%k Ab-initio calculations (QMC) accurate predictions
dQUE of the QE region including one- and two-body currents
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Outline of the talk

2nd Part of the Presentation

A

do 3%k Spectral function formalism: more approximate
dS2dE’ approach able to tackle QE, dip and m-production regions.

-y
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Outline of the talk

3nd Part of the Presentation

%k Intra-nuclear cascade: propagating
particles produced at the interaction vertex
through the nucleus




Theory of lepton-nucleus scattering

14

Inclusive cross section lepton scatters off a nucleus and

W)
the hadronic final state is undetected /

v, Z, W=
do o< L*P Ry
¢/ W)
Rag(w,q) = > (O1JL(@)|f){fI3(a)]0)d(w — Ef + Eo)

f

The initial and final wave functions describe many-body states:

Nuclear response to the electroweak probe:

0) = [Tg) L |f) = [UF), [y, We =), [, o), Wyt

One and two-body current operators
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The basic model of nuclear theory

At low energy, the effective degrees of freedom are pions and nucleons:

2
H:Z;:;’L | Zvij—l— Z ‘/;,Jk_l_

1< 1<g<k

1-body 2-body 3-body
N N N N N
N N N N N

The electromagnetic current is constrained by the Hamiltonian through the continuity equation
: 0 .. 40

V- Jen +ilH, T ] =0 vij,Ji] # 0

The above equation implies that the current operator includes one and two-body contributions

N N N N
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Green’s Function Monte Carlo approach

We want to solve the Schrédinger equation

Any trial wave function can be expanded in the complete set of eigenstates of the the

QMC techniques projects out the exact lowest-energy state:
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Integral Transtform Technigques

Nuclear response function in principle involve evaluating a number of transition amplitudes:

Rag(w,q) = Y (0[J1(a)|f){f|Ts(a)|0)6(w — Ef + Eo)
f

Valuable information can be obtained from the integral transform of the response function

Eoplo,q) = /dWK(va)RaB(WaQ) = (vo| L (@) K (o, H — Eo)Js(a)|vo)

A Inverting the integral transform is a complicated problem
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Integral Transtform Technigques

e The Lorentz integral transform (LIT)
1

(w—0Rr)? + 0'%

K(o,w) =

has been successfully exploited in
the calculation of nuclear responses:
Using HH: V. D. Efros et al., Phys
Lett B 338, 130 (1994)

Using CC: Bacca et al., PRC 76,
014003 (2007), PRL 111, 122502

(2013)

* The Laplace integral transform

K(o,w) =¢e %7

of the nuclear responses is computed within
GFMC and inverted using bayesian
techniques: Maximum Entropy

A. Lovato et al, Phys.Rev.Lett. 117 (2016),
082501, Phys.Rev. C97 (2018), 022502
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GFMC electron 4He-cross sections

Virtually exact results for nuclear electroweak responses in the
quasi-elastic region up to moderate values of q.
Initial and final state interactions fully accounted for.

Computational cost grows exponentially with the number of
particles: currently limited to 12C

& N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501

10 | | | | | 40 | | | | | 18 | | _ | | | |
9L E, =730 MeV | E, =961 MeV 16 L A\ E. = 1108 MeV _
3.5 - .6
~ 8t 0 =37° _ % 0 = 37.5°
) 30k ‘ 14 .
g 7L —e—1 €XD - 19L |
Z gL — 1b 1 25F
= — 12b 1.0 F i
Hoor —— 12b ANB 7 2.0 '
3 4 B | 08 B -
g x ].5 B O 6 | ¢ m
3 3r ;:Ikllﬁli ; 1.0 . V
o i = o, 32 i 0.4 F -
< 2 o T
1+ 4 05 F 0.2 F / -
0 ] ] ] O O ] ] ] ] ]

0.0 : ;
0 100 200 300 400 500 0 100 200 300 400 500 600 0 100 200 300 400 500 600
w [MeV] w [MeV] w [MeV]

- Very good agreement in the quasielastic region when: one- and two-body currents are included

* Peak on the right: 1 production can not be described within this approach 15



GFMC CC vy 12C-cross sections
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First microscopic calculation of
neutrino-nucleus cross section

do do(E,)
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d1,, dcosd, / o )dTMdCOSHM

& A.Lovato, NR et al, Phys.Rev.X 10 (2020 3, 031068
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Machine learning-based inversion of R(g,w)

E(T)=K(Q,T)R(Q) —>» RO =KQ,T)'E(T)

Inversion is unstable because of exponentially small tails in the kernel for large T

@ We define a Gaussian kernel basis functions

. I We contract the Gaussian unit by weights to
}( obtain the output associated to w;
‘..‘ N+ U4zs
. H . / 1=1,...,n,
@.@ the training parameters are: 6 = (u, o0, W)
@ @ @ The response functions are obtained by

exponentiating f(w)

& K.Raghavan, et al, arxiv:2010.12703 18



https://arxiv.org/abs/2010.12703

Machine learning-based inversion of R(g,w)

Training data examples of response functions
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The parameters are found by the supervised
learning approach solving

min L Z€ (Ek(T), Ri(Q), Ry (; 9))

Using a mini-batch gradient descent to
minimize a loss function that is the sum of

the response and Euclidean cost

600 {(Ey, Ry, Ry) = vrSr(Ri, Ri) + vex%(Ey, Ry

Comparison between the Phys-NN and MaxEnt reconstructions for the two-peak dataset
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Addressing future precision experiments

* Liquid Argon TPC Technolo & J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012)
y
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* The dominant reaction mechanism changes dramatically over the region of interest to oscillation
experiment 20



Factorization Scheme and Spectral Function

For sufficiently large values of |q|, the factorization scheme can be applied under the assumptions

D)
.; Wy)a—1

Wy) = p) @ [Wy)a

Ja :Z]Zx 7 |\IJO>

* The matrix element of the current can be written in the factorized form

(O Tal f) = D _Olllk) @ [f)a—1)(k] Y _ jilp)
k 1

* The nuclear cross section is given in terms of the one describing the interaction with individual bound
nucleons

doa = / dE d°kdonP(k, E)

* The intrinsic properties of the nucleus are described by the hole spectral function
21



The CBF Spectral Funchon of f|n|te nuc\e|

« 160 Spectral Function obtained within CBF
and using the Local Density Approximation 1t

Prpa(k, E) : + Peorr(k, E)
l
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& 0. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267 (1989).
& 0. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys. A579, 493 (1994) 22
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The one-nucleon Spectral Function

0.2

High energy and momentum
correlated pairs

0.15

0.1

E [GeV]

Realistic SF: 80% shell model
picture, 20% SRC

Fermi gas contribution : <

PFg(k,E) a 5(E — 63)9(1@}7 — ’k‘) 0

9 100~ np fraction Observed dominance of np-over-pp pairs
5 s Al Fe pp| for avariety of nuclei
-1(—5 -
@© s o
£ 50— [@68% C.L.
T " 095% C.L.
o " pp fraction Consequence of the tensor component
% o Wr——————a  Of the nucleon-nucleon interaction
10 50 100 A



Extended Factorization Scheme

e Two-body currents are included rewriting the hadronic final state as

) =) @ |fa—2)| —>

The hadronic tensor for two-body current processes reads

y dk dgk/
W;b (q,w)oc/dE(QW) @22 kk’b T‘pp>

( — b +2mpy — G(p) — €(p,)) : Relativistic two-body
currents

< NR et al, Phys.Rev. C99 (2019) no.2, 025502
< NR et al, Phys. Rev. Lett. 116, 192501 (2016)

MEC spin-isospin matrix elements, performing the integration using
the Metropolis MC algorithm

A
-
Dedicated code that automatically carries out the calculation of the ﬁJIA -------------- ﬂﬂ --------

25



Extended Factorization Scheme

 Production of real 1t in the final state

) = [pap) @ |fa-1) —

The hadronic tensor for two-body current processes reads

d3k pw v
Wipir (@, w) / dE -wpbz k)

X6(W—E+mN_6p — €Ex p7T

Pion production elementary amplitudes derived within the extremely sophisticated Dynamic Couple
Chanel approach; includes meson baryon channel and nucleon resonances up to W=2 GeV

« The diagrams considered resonant and non resonant 1 production

T T
& NR, et al, PRC100 (2019) no.4, 045503
+ & H. Kamano et al, PRC 88, 035209 (2013)

& S.X.Nakamura et al, PRD 92, 074024 (2015)

A 26



Extended Factorization Scheme: Results

& NR, S. Nakamura, T.S.H. Lee, A. Lovato, PRC100 (2019) no.4, 045503
25 | | | |

efx:p —e—

 We included in the
Extended Factorization
Scheme the one- and two-
body current contributions

and the pion production
amplitudes.

20

15

do/d),dE,, [nb/sr MeV]

- Good agreement with
electron scattering data
when all reaction
mechanisms are included

« Ongoing calculation of flux
folded cross sections

do/dQ,dE, [107° nb/sr MeV]
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Extended Factorization Scheme: Results

E.=1930MeV 6=16.0° E.=4050 MeV 6=150°
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- We included the DCC predictions for two 1t production prel [ m|nary

- We plan to tackle the DIS further extending the convolution approach:
spectral function+nucleon pdf
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QMC Spectral Function of

Ignt nuclel

- 107 VMC
 Single-nucleon spectral function: ) n,o ——m—-
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QMC Spectral Function of light nuclei
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QMC Spectral Function of light nuclei

3 H(e,e') E.=2222MeV 6=24.0° 3 He(e,e’) E.=2222 MeV 6=124.0°
-\ —— xsec 3h SF | data3h A —— xsec 3he SF | data 3he
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- Comparison with new sets of JLab data for electron scattering on 3H and 3He

- We are currently working on calculating the spectral function of 12C and validation with other
many-body approaches
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A QMC based approach to cascade

Figure by T. Golan
The propagation of nucleons through the nuclear

medium is crucial in the analysis of electron-nucleus
scattering and neutrino oscillation experiments.

Charge Exchange ®
-, ’ Elastic
Scattering

.
Q“
.

Describing nucleons’ propagation in the nuclear
medium would in principle require a fully quantum-
mechanical description of the hadronic final state.

Pion Production

Due to its tremendous difficulty we follow a seminal
work of Metropolis and develop a semi-classical
intranuclear cascade (INC) that assume classical
propagation between consecutive scatterings

¢
O of
¢

J.Isaacson, W. Jay, P. Machado, A. Lovato, NR, arXiv:2007.15570 55
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Sampling nucleon configurations
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The nucleons’ positions utilized in the INC are sampled from 36000 GFMC configurations.
For benchmark purposes we also sampled 36000 mean-field (MF) configurations from the
single-proton distribution.

The differences between GFMC and MF configurations are apparent when comparing the
two-body density distributions: repulsive nature of two-body interactions reduced the
probability of finding two particles close to each other
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Probabillity of interaction

To check if an interaction between nucleons occurs an accept-reject test is
performed on the closest nucleon according to a probability distribution.

We use a cylinder probability distribution, this mimics a more classical
billiard ball like system where each billiard ball has a radius

In addition we consider a gaussian probability distribution

For benchmark purposes, we also implemented the mean free path approach, routinely used in
event generators

P = 0,5d€ where a constant density is assumed ,0(7“1) ~ ;0(7“1 + dﬁ) ~ p

r < P J the interaction occurred, check Pauli blocking

we sample a number 0 <z <1
r>P X theinteraction DID NOT occur
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Results: proton-Carbon cross section

T T | T T T T T T | T T
—— MF Cyl El -—- MF Cyl Tot

Reproducing proton-nucleus cross section -

. ) 500, —— QMC Cyl El —~-- QMC Cyl Tot
measurements is an important test of the MF Gauss El o~ MF Gauss Tot
accuracy of the INC model. —— QMC Gauss El  --- QMC Gauss Tot |

400 —— MFP El —== MFP Tot 7

a
. _ £ 300 -
+ We define a beam of protons with energy E, > __-=zz=zzzZZZZZZ]
uniformly distributed over an area A. Ay _ D e R
- We propagate each proton in time and check 200 L S
for scattering at each step. _
- The Monte Carlo cross section is defined as: 100l
1 | 1 1 1 | 1 1 1 | 1 1 1 |
A Necat 0 400 600 800 1000
OMC = T, (MeV)
Niot g

The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID
database in which only the elastic contribution is retained. The dashed lines used the NASA
parameterization , which includes inelasticities.
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Results: proton-Carbon cross section

T T T T T T T | T T T T T T T T T T T T | T T T T
—— MF Cyl El —-- MF Cyl Tot

500 —— QMC Cyl El -—-- QMC Cyl Tot
The Gauss and cylinder probability i —— MF Gauss El --- MF Gauss Tot 1
distribution yield similar results -] ol QMC Gauss El QMC Gauss Tot .

400 » MFP Tot -

£ 300
B Y —
Large difference with the mean-free-path S ook W g T —SSSSEEREREE
implementation: conceptual differences T S T "
with respect to the previous cases [
100

O =25 850 75 100 125 150 175 200
Tp (MeV)

QMC and MF distribution lead to almost

identical results: this observable does not

depend strongly on correlations among

the nucleons The solid lines have been obtained using the

nucleon- nucleon cross sections from the SAID
database in which only the elastic contribution is
retained. The dashed lines used the NASA
parameterization , which includes inelasticities.
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Results: nuclear transparency

The nuclear transparency yields the

average probability that a struck nucleon  —— MFGaussEl  --- MF Gauss Tot
leaves the nucleus without interacting Lo ¢ Data — E“FE{Q El o g"nggTot }
. . ' — QMC Gauss E —== QMC Gauss Tot |
with the spectator particles | —— QMC Cyl El --- QMCCyl Tot |
0.9 —— MFP El —-—- MFP Tot -

Nuclear transparency is measured in
(e,e’p) scattering experiments

Transparency

Simulation: we randomly sample a
nucleon with kinetic energy Tp and

propagate it through the nuclear medium 043.......................................-
"0 250 500 750 1000 1250 1500 1750 2000
T, (MeV)
T L Nhits
MC — 1 — N
tot

Gaussian and cylinder curves are consistent and correctly reproduces the data. Correlations do not
seem to play a big role.



Results: correlation effects

Histograms of the distance traveled by a struck particle
before the first interaction takes place for different
values of the interaction cross section

When using QMC configurations, the hit nucleon is
surrounded by a short-distance correlation hole:
expected to propagate freely for ~ 1 fm before interacting

For 0=0.5 mb the MF distribution peaks toward
smaller distances than the QMC one: originates from
the repulsive nature of the nucleon-nucleon potential

For =50 mb large cylinder, MF and QMC distributions
become similar. The propagating particle is less
sensitive to the local distribution of nucleons and more
sensitive to the integrated density over a larger volume,
reducing the effect of correlations
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Future Prospects

& S.Gandolfi, D.Lonardoni, et al, Front.Phys. 8 (2020) 117

O =
-20 -_ 3}I 3He
[ 4 6 =
-40 He ®He 61 5 811e
Li
60 |
g R
q) =
=) 80 |
S i
i -
-100 12C
-120 |k — NV2+3-Ia
== FExp -
B = GT+Et-1.0
-140 | 160

- Estimate the uncertainty of the theoretical

calculation: can be achieved in QMC
calculations. Work in this direction has been done
for the energy spectra of light nuclei. The error
band comes from the truncation of the chiral
expansion and statistical uncertainty of the ab-
initio method

Further develop the machine-learning inversion of
the nuclear responses to include full uncertainty
quantification and propagation by leveraging the
linearity of the Laplace transform.

- Extend the reach of QMC methods that can use highly-realistic nuclear interactions to medium-
mass nuclei: A> 14 sampling the spin and isospin degrees of freedom to drastically reduce the

computational cost.



Future Prospects

preliminary R, 3He, g =500 MeV

. — GFMC 1b
¢ s -== STA 1b
\ e

- Comparisons among QMC, SF, and Short Time
Approximation (STA) approaches to precisely
quantify the uncertainties inherent to the
factorization of the final state.

+ Obtain a QMC spectral function for light and

and exclusive observables.

. . . . . . RES and DIS region
50 75 100 125 150 175 200 225 250
w [MeV]

- Utilize inputs from lattice-QCD to describe nucleons’ properties and couplings to further
constrain two-body dynamics.

 Intranuclear cascade: include 1t degrees of freedom: t production, absorption and elastic
scattering as well as in medium corrections

medium mass nuclei. Use it to compute inclusive

« Understand how to model the transition between



Thank you for your attention!




