
Addressing Neutrino-Oscillation Physics
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Detectors measure the neutrino interaction rate:

Ne(Erec, L) /
X
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A  quantitative knowledge of σ(E) and fσ(E) is crucial to precisely extract ν oscillation parameters
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To study neutrinos we need nuclei

Number of Interactions = � ⇥ �⇥N

# Targets
Cross Section

? Where does Nuclear Physics come into play

Neutrino Flux
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Utilize heavy target in neutrino detectors to maximize interactions→ understand nuclear structure
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Off-axis:
full tracking and 
particle 
reconstruction in near 
detectors 
(magnetized TPC!)

huge water 
cherenkov detector 
(50 kTon) with 

optimal µ/e 

identification to 

distinguish ν
e
, ν

µ
 

T2K: Tokai (JPARC) to Kamioka (SuperKamiokande)

1% mis-id

On-axis:
iron/CH scintillator 
monitoring of beam 
angle and position

Long baseline (295 km) neutrino oscillation experiment with off-axis technique:

Far Detector:

Near Detectors:
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Lepton-nucleus cross section
Quasielastic scattering 
on a nucleus:

Pion production: RES

DIS

d�

d⌦dE0

Energy transfer !
!e ⇠
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2m

QE
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RES
DIS

Different reaction mechanisms contributing to lepton-nucleus cross section

 —fixed value of the beam energy (monochromatic)

In neutrino experiments these contributions are not nicely separated  6
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Outline of the talk
1st Part of the Presentation

 Ab-initio calculations (QMC) accurate predictions 
of the QE region including one- and two-body currents 
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2nd Part of the Presentation

 Spectral function formalism: more approximate 
approach able to tackle QE, dip and π-production regions.
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Outline of the talk



3nd Part of the Presentation

Theory

EG
Exp
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 Intra-nuclear cascade: propagating 
particles produced at the interaction vertex 
through the nucleus

Outline of the talk



|0i = | A
0 i , |fi = | A

f i, | N
p , A�1

f i, | ⇡
k , 

N
p , A�1

f i . . .

Theory of lepton-nucleus scattering

`

`0

�, Z,W±

| 0i

| f i

The initial and final wave functions describe many-body states:

+=

One and two-body current operators

d� / L↵�R↵�

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

Nuclear response to the electroweak probe:
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Inclusive cross section lepton scatters off a nucleus and 
the hadronic final state is undetected



The basic model of nuclear theory
At low energy, the effective degrees of freedom are pions and nucleons:


H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

1-body 2-body 3-body
NN

NN

NN

NN

N

N

 The electromagnetic current is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J
0
EM] = 0

 The above equation implies that the current operator includes one and two-body contributions

Jµ(q) =
X

i

jµi +
X

i<j

jµij + . . .
NN

NN

+

NN

NN

[vij , j
0
i ] 6= 0
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Green’s Function Monte Carlo approach
We want to solve the Schrödinger equation  

H (R; s1 . . . sA, ⌧1 . . . ⌧A) = E (R; s1 . . . sA, ⌧1 . . . ⌧A)

Any trial wave function can be expanded in the complete set of eigenstates of the the 
Hamiltonian according to

| T i =
X

n

cn| ni H| ni = En| ni

QMC techniques projects out the exact lowest-energy state: 
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Fig. 4 (Pudliner, et al.)
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✐ B. Pudliner et al., PRC 56, 1720 (1997)

E0=-28.3 MeV

e�(H�E0)⌧ | T i ! | 0i
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Nuclear response function in principle involve evaluating a number of transition amplitudes:

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

E↵�(�,q) =

Z
d!K(�,!)R↵�(!,q) = h 0|J†

↵(q)K(�, H � E0)J�(q)| 0i

Valuable information can be obtained from the integral transform of the response function

Integral Transform Techniques
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Inverting the integral transform is a complicated problem
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• The Lorentz integral transform (LIT)

has been successfully exploited in 
the calculation of nuclear responses: 

Using HH: V. D. Efros et al., Phys 
Lett B 338, 130 (1994)

Using CC: Bacca et al., PRC 76, 
014003 (2007), PRL 111, 122502 
(2013)

K(�,!) =
1

(! � �R)2 + �2
I

• The Laplace integral transform

of the nuclear responses is computed within 
GFMC and inverted using bayesian 
techniques: Maximum Entropy 

A. Lovato et al, Phys.Rev.Lett. 117 (2016), 
082501, Phys.Rev. C97 (2018), 022502 
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GFMC electron 4He-cross sections

✐ N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501 
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].
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FIG. 7. Double-di↵erential electron-4He cross sections for di↵erent values of incident electron energy and scattering angle.
The green and blue lines correspond to GFMC calculation were only one- body and one- plus two-body contributions in the
electromagnetic currents are accounted for. The red line indicates one plus two-body current results obtained in the ANB
frame, employing the two-body fragment model to account for relativistic kinematics. The experimental data are taken from
Ref. [14].

✐ N.R, W. Leidemann, et al PRC 97 (2018) no.5, 055501  

• Very good agreement in the quasielastic region when: one- and two-body currents are included
• Peak on the right: π production can not be described within this approach

Virtually exact results for nuclear electroweak responses in the 
quasi-elastic region up to moderate values of q. 

Initial and final state interactions fully accounted for.

Computational cost grows exponentially with the number of 
particles: currently limited to 12C
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III. RESULTS

Muon neutrino and antineutrino flux-averaged cross
sections are obtained from

⌧
d�

dTµ d cos ✓µ

�
=

Z
dE⌫ �(E⌫)

d�(E⌫)

dTµ d cos ✓µ
, (9)

where �(E⌫) is the normalized ⌫µ or ⌫µ flux—those
for MiniBooNE and T2K are shown in Fig. 3—and
d�(E⌫)/(dTµ d cos ✓µ) are the corresponding inclusive
cross sections of Eq. (2). The experimental data are
binned in cos ✓µ bins of constant width (0.1) for Mini-
BooNE, and varying widths for T2K; when comparing
to these data, the calculated cross sections are averaged
over the relevant cos ✓µ bin.
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ᅿ	Ӻ ᇌ
(
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2o
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hkE ᅸ

FIG. 3. Normalized ⌫µ fluxes of MiniBooNE and T2K, and
normalized ⌫µ flux of MiniBooNE.

Predictions for the flux-averaged cross sections on 12C
corresponding to the two experiments and obtained by
including one-body only, and one- and two-body, cur-
rents are shown by, respectively, dashed (green) and
solid (blue) lines in Figs. 4–6. The shaded areas re-
sult from combining statistical errors associated with the
GFMC evaluation of the Euclidean response functions,
uncertainties in the maximum-entropy inversion of them,
and uncertainties due to extrapolation of the response
functions outside the calculated (q,!) range, which is
100 MeV  q  700 MeV and ! from threshold to ! . q.
This extrapolation is carried out by exploiting the scaling
property of the various response functions, as outlined at
the end of the previous section. The large cancellation
between the dominant terms proportional to vxx Rxx and
vxy Rxy in antineutrino cross sections leads to somewhat
broader error bands than for the neutrino cross sections,
for which those terms add up. Furthermore, we note
that the cross-section scales in Figs. 4 and 5 are di↵er-
ent, those for the ⌫µ-CCQE data being a factor of about
2 to 10 smaller than for the ⌫-CCQE data as the muon
scattering angle increases from 0� to 90�.

Overall, the MiniBooNE ⌫µ and ⌫µ, and T2K ⌫µ, data
are in good agreement with theory, when including the

contributions of two-body currents. This is especially no-
ticeable in the case of the MiniBooNE ⌫µ data at forward
scattering angles. However, the calculated cross sections
underestimate somewhat the MiniBooNE ⌫µ data at pro-
gressively larger muon kinetic energy Tµ and backward
scattering angles ✓µ, and the ⌫µ data at forward ✓µ over
the whole Tµ range. By contrast, the full theory (with
one- and two-body currents) appears to provide a good
description of the T2K ⌫µ data over the whole measured
region.
For a given initial neutrino energy E⌫ , the calculated

cross section is largest at the muon energy Tµ correspond-
ing to that of the quasielastic peak,

T
qe
µ

+mµ ⇡ E⌫

1 + 2 (E⌫/m) sin2 ✓µ/2
, (10)

wherem is nucleon mass, and on the r.h.s. of the equation
above we have neglected the muon mass. The position
of the quasielastic peak then moves to the left, towards
lower and lower T

qe
µ
, as ✓µ changes from the forward to

the backward hemisphere. The general trend expected on
the basis of this simple picture is reflected in the calcula-
tion and data, even though the cross sections in Figs. 4-6
result from a folding with the neutrino flux, which is far
from being monochromatic. Nevertheless, the correlation
between peak location in the flux-averaged cross sections
and ✓µ remains. For example, the T2K flux is largest
at E⌫ ⇡ 560 MeV and fairly narrow; hence, one would
expect the T2K flux-averaged cross section be peaked at
the muon momentum p

qe
µ

⇡ 550 MeV for cos ✓µ =1, and
p
qe
µ

⇡ 450 MeV for cos ✓µ =0.65, in reasonable accord
with the data of Fig. 6.
In Figs. 4 and 5 we also present the flux-folded ⌫µ

and ⌫µ cross sections obtained in plane-wave-impulse-
approximation (PWIA) for three di↵erent bins in cos ✓µ
(corresponding to the forward, intermediate, and back-
ward region) of the MiniBooNE data. We have adopted
here the most naive (non-relativistic) formulation of
PWIA based on the single-nucleon momentum distri-
bution rather than the spectral function.3 Hence, the
PWIA response functions follow from

R
PWIA
↵�

(q,!)=

Z
dpN(p)x↵�(p,q,!)

⇥ �

 
! � E � |p+ q|2

2m
� p

2

2mA�1

!
, (11)

where the factors x↵�(p,q,!) denote appropriate combi-
nations of the CC components (the same single-nucleon
CC utilized in the GFMC calculations), and N(p) is the
nucleon momentum distribution in 12C (as calculated in
Ref. [69]). The e↵ects of nuclear interactions are sub-
sumed in the single parameter E, which can be inter-
preted as an average separation energy (we take the value

3 It should be noted here that ab initio calculations of the 12C
spectral functions are not currently available.

First microscopic calculation of 
neutrino-nucleus cross section

⌧
d�

dTµ d cos ✓µ

�
=

Z
dE⌫ �(E⌫)

d�(E⌫)

dTµ d cos ✓µ
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 6. T2K flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for different ranges of cos θµ. The experimental data and their shape uncertainties are
from Ref. [48]. Calculated cross sections are obtained with ΛA =1.0 GeV.

vector form factors in agreement with experimental data
which are of course quite accurate. These calculations
suggest a larger value of ΛA may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos θµ), obtained by replacing in the
dipole parametrization the cutoff ΛA ≈ 1 GeV with the
value Λ̃A ≈ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for νµ, the magnitude of
the increase turns out to be more pronounced for νµ than
for νµ—as a matter of fact, the νµ cross sections are re-
duced at backward angles (0.1 ≤ cos θµ ≤ 0.2). Overall,
it appears that the harder cutoff implied by the LQCD
calculation of GA(Q2) improves the accord of theory with
experiment, marginally for νµ and more substantially for
νµ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we

caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [71], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the ∆-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal effectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [28, 72] or on

T2K

MEC 
enhancement



Machine learning-based inversion of R(q,ω)
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Inversion is unstable because of exponentially small tails in the kernel for large τ

We define a Gaussian kernel basis functions 

We contract the Gaussian unit by weights to 
obtain the output associated to ωi

the training parameters are:

The response functions are obtained by 
exponentiating f(ωi)

✐ K.Raghavan, et al, arxiv:2010.12703

https://arxiv.org/abs/2010.12703
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The parameters are found by the supervised 
learning approach solving

Using a mini-batch gradient descent to 
minimize a loss function that is the sum of 
the response and Euclidean cost

Training data examples of response functions 


Comparison between the Phys-NN and MaxEnt reconstructions for the two-peak dataset 

Machine learning-based inversion of R(q,ω)



Addressing future precision experiments
• Liquid Argon TPC Technology ✐ J.A. Formaggio and G.P. Zeller, Rev. Mod. Phys. 84 (2012) 

• The dominant reaction mechanism changes dramatically over the region of interest to oscillation 
experiment
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complicated 
structure, 
out of the 
reach of 
most of the 
ab initio 
methods 

Hyper-K

DUNE

 20



Factorization Scheme and Spectral Function

• The matrix element of the current can be written in the factorized form 

• The nuclear cross section is given in terms of the one describing the interaction with individual bound 
nucleons 

h0|J↵|fi !
X

k

h0|[|ki ⌦ |fiA�1]hk|
X

i

ji↵|pi

d�A =

Z
dE d3kd�NP (k, E)

• The intrinsic properties of the nucleus are described by the hole spectral function

 For sufficiently large values of |q|, the factorization scheme can be applied under the assumptions

J↵ =
X

i
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The CBF Spectral Function of finite nuclei
• 16O Spectral Function obtained within CBF 

and using the Local Density Approximation

136  Many-body theory exposed!

Fig. 7.6  Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5  demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5 , however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4 . A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6 . The results in Fig. 7.6  indicate
that there is an essentially global reduction of the sp strength of about
35 % for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4 Most experiments have been performed on closed-shell nuclei.

PLDA(k, E) = PMF (k, E) + Pcorr(k, E)

X

n

Zn|�n(k)|2Fn(E � En)

✐ O. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267 (1989).  

✐ O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys. A579, 493 (1994)  22



The CBF Spectral Function of finite nuclei
• 16O Spectral Function obtained within CBF 

and using the Local Density Approximation Z
d3rPNM

corr (k, E; ⇢ = ⇢A(r))

• The Correlated Basis Function approach accounts for 
correlations induced by the nuclear interactions
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Argonne v18 UIX, IL7

• The one-body Spectral function of nuclear matter:

PLDA(k, E) = PMF (k, E) + Pcorr(k, E)

 23✐ O. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267 (1989).  
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nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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 Observed dominance of np-over-pp pairs 
for a variety of nuclei

Consequence of the tensor component 
of the nucleon-nucleon interaction 

PFG(k, E) = �(E � ✏B)✓(kF � |k|)

Realistic SF: 80% shell model 
picture, 20% SRC

PFG(k, E) = �(E � ✏B)✓(kF � |k|)
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Extended Factorization Scheme
• Two-body currents are included rewriting the hadronic final state as 

|fi ! |pp0ia ⌦ |fA�2i

Relativistic two-body 
currents


Wµ⌫
2b (q,!) /

Z
dE

d3k

(2⇡)3
d3k0

(2⇡)3
d3p

(2⇡)3
Ph(k,k

0, E)2
X

ij

hk k0|jµij
†|p p0ia

⇥ hp p0|j⌫ij |k k0i�(! � E + 2mN � e(p)� e(p0)) .

The hadronic tensor for two-body current processes reads

�

⇡
⇡

�

✐ NR et al, Phys.Rev. C99 (2019) no.2, 025502 

Dedicated code that automatically carries out the calculation of the 
MEC spin-isospin matrix elements, performing the integration using 
the Metropolis MC algorithm

✐ NR et al, Phys. Rev. Lett. 116, 192501 (2016) 
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Extended Factorization Scheme
• Production of real π in the final state

|fi ! |p⇡pi ⌦ |fA�1i

Wµ⌫
1b1⇡(q,!) /

Z
d3k

(2⇡)3
dEPh(k, E)

d3p⇡
(2⇡)3

X

i

hk|jµi
†|p⇡pihp⇡p|j⌫i |ki

⇥ �(! � E +mN � e(p)� e⇡(p⇡))

Pion production elementary amplitudes derived within the extremely sophisticated Dynamic Couple 
Chanel approach; includes meson baryon channel and nucleon resonances up to W=2 GeV


The hadronic tensor for two-body current processes reads

✐ S.X.Nakamura et al, PRD 92, 074024 (2015)

✐ H. Kamano et al, PRC 88, 035209 (2013)

✐ NR, et al, PRC100 (2019) no.4, 045503 

• The diagrams considered resonant and non resonant π production

+

�

⇡ ⇡
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✐ NR, S. Nakamura, T.S.H. Lee, A. Lovato, PRC100 (2019) no.4, 045503 
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FIG. 8. Left panel: Inclusive 12C(e,e’) cross sections at 620 MeV and 36� scattering angle. The red and blue curves correspond
to the CBF and SCGF SF calculations, respectively. The dashed lines correspond to the IA calculation in which the outgoing
nucleon is free while in the solid ones FSI corrections have been taken into account. Right panel: inclusive Ar(e,e’) cross section
at 2.2 GeV and 15.5� scattering angle. The solid (dashed) line shows the quasielastic cross section without (with) the inclusion
of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
and dashed (red) line correspond to one- and two-body current contributions, respectively. The dash-dotted (magenta) lines
represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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of FSI obtained utilizing the SCGF spectral function calculations. Experimental data are taken from Ref. [94, 95] and show
both the quasielastic peak and the contribution from meson production at larger missing energies.
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Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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��
��������

� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ր
ԓӺ ր(M

#f
b`

J
2o

)

ᆂ (:2o)

Ӻր4djy J2o- ᅲր4jdXyੋ
2tT

iQi .**
R#
k#ᅺ .**

�
�

��
��
��

� ��� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ᇋ
ԓӺ ᇋ(��

΅ M#
fb

`J
2o

)

ᆂ (:2o)

Ӻᇌᆡ � � :2o- ᅲᇋ � ��ੋ
iQi .**

R#
k#ၡ.**

FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
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represent ⇡ production contributions. The solid (black) line is the total results obtained summing the three di↵erent terms.
Right panel: same as left panel but for CC ⌫µ scattering on 12C. The energy of the ⌫µ is 1 GeV and the scattering angle is 30�.

uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed
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both the quasielastic peak and the contribution from meson production at larger missing energies.

��
��������

� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ր
ԓӺ ր(M

#f
b`

J
2o

)

ᆂ (:2o)

Ӻր4djy J2o- ᅲր4jdXyੋ
2tT

iQi .**
R#
k#ᅺ .**

�
�

��
��
��

� ��� ��� ��� ��� ��� ��� ���ԓᅼ�ԓဇ ᇋ
ԓӺ ᇋ(��

΅ M#
fb

`J
2o

)

ᆂ (:2o)

Ӻᇌᆡ � � :2o- ᅲᇋ � ��ੋ
iQi .**

R#
k#ၡ.**

FIG. 9. Left panel: Inclusive 12C(e,e’) cross sections at 730 MeV and 37� scattering angle. The short-dashed (blue) line
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uncertainties that are intrinsic with the accuracy of state-of-the-art nuclear forces [40].
The left panel of Fig. 9 displays the double-di↵erential electron-12C cross sections for Ee = 730 MeV, ✓e = 37�. The

theoretical results have been obtained using the CBF spectral function and correcting for FSI e↵ects the quasielastic
part corresponding to the dashed blue line. The solid black line corresponds to the total cross section obtained
summing up the di↵erent contributions associated with the di↵erent reaction mechanisms. The dashed blue line
is the quasi-elastic peak obtained including the one-body current only, while the short-dashed red line corresponds
to two-nucleon knockout final states induced by MEC reaction mechanisms. The cross section associated with the
emission of a real pion and a nucleon is represented by the dot-dashed magenta line. Note that, as discussed in the
interference between one- and two-body currents is not included in these calculations. Although it was argued in
Ref. [18] that this leads to a small enhancement in the dip region within the factorization scheme, the GFMC and
STA calculations presented in Secs. III and IV display a significant increase in the transverse response due to the
interference contribution. There is an overall good agreement between theoretical results and experimental data in
all the kinematical setups we considered. In particular, the inclusion of realistic pion production mechanism turns
out to be essential to reproduce the data in the �-production region.

The results obtained for the double-di↵erential CC ⌫µ-12C scattering cross sections are shown in the right panel of
Fig. 9 for E⌫ = 1 GeV, ✓µ = 30�. The calculations have been carried out within the same framework employed in
the electromagnetic case and utilizing the CBF spectral function. The only additional ingredients are the axial terms
in the current operators and in the ⇡-production amplitudes. In order to compare with experimental data a folding
with the energy distribution of a given neutrino flux should be performed. Note that the inclusion of ⇡ production
mechanisms is crucial also for a comparison with CC-0⇡ data in which the ⇡ is produced and subsequently reabsorbed

•  We included in the 
Extended Factorization 
Scheme the one- and two-
body current contributions 
and the pion production 
amplitudes. 

• Good agreement with 
electron scattering data 
when all reaction 
mechanisms are included

• Ongoing calculation of flux 
folded cross sections
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Extended Factorization Scheme: Results 



preliminary• We included the DCC predictions for two π production

• We plan to tackle the DIS further extending the convolution approach: 
spectral function+nucleon pdf
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Extended Factorization Scheme: Results 



QMC Spectral Function of light nuclei
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Figure 1: VMC mean-field and full momentum distributions of 4He.

Z
dE

d
3
k

(2⇡)3
Pn(k, E) =

Z
d
3
k

(2⇡)3
nn(k) = A� Z , (4)

where Z is the number of protons and A is the number of nucleons of a given
nucleus. This normalization is consistent with the one of the variational
Monte Carlo (VMC) single-nucleon momentum distribution reported in [2].

Spectral function of
4
He

For clarity, let us deal with the proton spectral function first. The single-
nucleon (mean-field) contribution P

MF

p (k, E) corresponds to identifying | A�1

n i
with | 3

H

0
i, the ground-state of 3H

P
MF

p (k, E) = n
MF

p (k)�
⇣
E � B4He +B3H � k

2

2m3H

⌘
. (5)

where B4He ' 28.30 MeV and B3H ' 8.48 MeV are the binding energies of
4He and 3H, respectively and m3H is the mass of the recoiling nucleus. In the
above equation we introduced the mean-field proton momentum distribution

n
MF

p (k) = |h 4
He

0
|[|ki ⌦ | 3

H

0
i]|2 , (6)

in which h 4
He

0
|[|ki ⌦ | 3

H

0
i is the Fourier transform of the single-nucleon

radial overlap that can be computed within both VMC and Green’s function
Monte Carlo (GFMC) [3].
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• The single-nucleon overlap has been computed 
within QMC ( center of mass motion fully 
accounted for)

 290 2 4 6 8 100.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r (fm)

A
(r

) (
fm

-3
/2

)

4He(0+) -> 3H(1/2
+)+p - AV18+UX

SF s1/2 = 1.62

Pp,n(k, E) =
X

n

���h A
0 |
⇥
|ki| A�1

n i
⇤���

2

⇥ �(E + EA
0 � EA�1

n )

=PMF (k, E) + P corr(k, E)

• Single-nucleon spectral function:



P corr
p (k, E) =

X

n

Z
d3k0

(2⇡)3
|h A

0 |[|ki |k0i | A�2
n i]|2�(E + EA

0 � e(k0)� EA�2
n )

 30

��Ј
��φ
��ϵ
��ϯ
��Κ
��Θ
��ϩ

� ��� � ��� � ��� � ��� �

ԝ ։	Ԡ~ Ԇ
����
U

7K
ϯ V

Ԡ U7K�V

ԝ։	Ԡ ~Ԇ
ԝ։	Ԡ ~Ԇ
	ԡքօ � ���
ԝ։	Ԡ ~Ԇ
	ԡքօ � ���
ԝ։	Ԡ ~Ԇ	ԡքօ � ���


 Only SRC pairs should be considered:              and                       be orthogonalized | 

3
H

0 i |k0i| A�2
n i

 We introduce cuts on the 
relative distance between the 
particles in the two-body 
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• Comparison with new sets of JLab data for electron scattering on 3H and 3He

• We are currently working on calculating the spectral function of 12C and validation with other 
many-body approaches

Preliminary

QMC Spectral Function of light nuclei



A QMC based approach to cascade
The propagation of nucleons through the nuclear 
medium is crucial in the analysis of electron-nucleus 
scattering and neutrino oscillation experiments.


Final state interactions

Introduction

MC generators

NuWro

Final state interactions
FSI
Intranuclear cascade
LP effect
Formation time
NOMAD
NC π
Summary

MB NCEL analysis

Backup slides

Tomasz Golan NuWro @ HEP UW 39 / 61

FSI describe the propagation of particles created in a primary
neutrino interaction through nucleus

All MC generators (but GIBUU) use intranuclear cascade model

Describing nucleons’ propagation in the nuclear 
medium would in principle require a fully quantum-
mechanical description of the hadronic final state. 


Due to its tremendous difficulty we follow a seminal 
work of Metropolis and develop a semi-classical 
intranuclear cascade (INC) that assume classical 
propagation between consecutive scatterings 

J.Isaacson, W. Jay, P. Machado, A. Lovato, NR, arXiv:2007.15570 

Figure by T. Golan
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Sampling nucleon configurations4

tic NN and 3N potentials, and consistent one- and two-
body meson-exchange currents [50]. GFMC begins with
the construction of a trial wave function  T that is a
symmetrized product of two- and three-body correla-
tion operators acting on an antisymmetric A-body single-
particle wave function that has the proper quantum num-
bers for the state of interest. The variational parameters
in  T are found by minimizing the energy expectation
value

E0  ET =
h T |H| T i
h T | T i

, (2)

where E0 is the true ground-state energy of the system.
The calculation of ET requires the numerical solution of
a multidimensional integral that is carried out employing
standard Metropolis Monte Carlo sampling in configura-
tion space.

GFMC then projects out the lowest eigenstate  0 of
the given quantum numbers starting from  T by per-
forming a propagation in imaginary time ⌧

| 0i = lim
⌧!1

exp[�(H � E0)⌧ ]| T i. (3)

The propagation | (⌧)i = exp[�(H � E0)⌧ ]| T i is car-
ried out as a series of many small imaginary-time steps
�⌧ . Expectation values of operators are evaluated as
mixed matrix elements O(⌧) = h T |O| (⌧)i, and the
behavior as a function of ⌧ analyzed to obtain con-
verged results. Because H and exp[�(H � E0)⌧ ] com-
mute, the mixed estimate is the exact expectation of
h (⌧/2)|O| (⌧/2)i but linear extrapolations are used to
evaluate other quantities.

In addition to binding energies the GFMC provides
detailed information on the distribution of nucleons in a
nucleus in both coordinate and momentum space, which
are interesting in multiple experimental settings. For ex-
ample, the mixed-estimate of the single-nucleon density
is calculated as

⇢N (r) =
1

4⇡r2
⌦
 T

��
X

i

�(r � |ri|)PN

�� (⌧)
↵
, (4)

where N = p, n; PNi =
1±⌧zi

2 is the neutron or proton
projector operator; and, ⇢N integrates to the number of
protons or neutrons. The two-body density distribution,
yielding the probability of finding two nucleons with sep-
aration r, is defined as

⇢NN (r) =
1

4⇡r2
⌦
 T

��
X

i<j

�(r � |rij |)PNiPNj

�� (⌧)
↵
. (5)

The positions of the constituents protons and neutrons
utilized in the nuclear cascade algorithm are sampled
from 36000 GFMC configurations. We employ the so-
called constrained-path approximation [59] to make sure
that their Monte Carlo weights remain positive, thereby
facilitating their usage in the cascade algorithm. As a
consequence, the single-proton distribution displayed by

FIG. 3: Nucleon density in carbon from Green’s
function Monte Carlo (red) and mean field (blue)

configurations.

the blue solid circles of Fig. 3 is slightly di↵erent from the
results reported in Ref. [60], which have been obtained
performing fully unconstrained imaginary-time propaga-
tions. Since we neglect the charge-symmetry breaking
terms in the Hamiltonian, and since 12C is isospin sym-
metric, the single-neutron distribution is identical to that
of the proton.
For benchmark purposes, we also sample 36000 mean-

field (MF) configurations from the single-proton distribu-
tion. The corresponding single-proton densities coincide
by construction with the GFMC one, as shown in Fig. 3.
However, the di↵erences between GFMC and MF con-
figurations become apparent when comparing the corre-
sponding two-body density distributions represented in
Fig. 4. The short-range repulsive core of the NN in-
teraction prevents two nucleons from being close to each
other. As a consequence, the pp and np GFMC density
distributions are small at short separation distances. Fur-
thermore, the di↵erence between the GFMC pp and np
density distributions around r = 1 fm can be attributed
to the strong tensor correlations induced by the one-pion-
exchange part of the NN interaction, which is further en-
hanced by the two-pion-exchange part of the 3N poten-
tial. Note that the short-range behavior of ⇢NN , which is
largely nucleus independent, does depend strongly on the
NN interaction model [61]. On the other hand, the MF
ones do not exhibit this rich behavior as the correlations
among nucleons are entirely disregarded.

B. Nucleon momentum distribution

As mentioned above, when a nucleon is struck, its mo-
mentum is obtained assuming either a local or global
Fermi gas distribution. In the case of the local Fermi gas,

5

FIG. 4: Proton-proton (top panel) and proton-neutron
(bottom panel) correlation functions in carbon from
Green’s function Monte Carlo (red) and mean field

(blue) configurations.

the magnitude of the three-momentum is randomly sam-
pled in the interval [0, kN

F (r)] where kN
F (r) is the Fermi

Momentum defined in terms of the single nucleon den-
sity kN

F (r) = (⇢N (r)3⇡3)1/3 and N = p, n. In the case
of the global Fermi gas, the momentum is determined in
the same way, but kN

F is position independent. The lo-
cal Fermi gas model is known to provide a more realistic
nucleon momentum distribution for finite nuclei than the
global Fermi gas. For this reason, although both mod-
els are implemented in our code, we only present results
based on the local Fermi gas predictions. In the future,
we plan to include more accurate nucleon momentum dis-
tribution, based on state-of-the-art many-body calcula-
tions that properly account for nuclear correlations.

C. Nucleon-nucleon interaction algorithm

To check if an interaction between nucleons occurs,
an accept-reject test is performed on the closest nu-
cleon according to a probability distribution P (b) (see
e.g. Ref. [62] for similar considerations) where b is the
impact parameter. We impose two conditions on this
probability,

P (0) = 1 and

Z 2⇡

0

Z 1

0
d' bdbP (b) = �, (6)

where the cross section � depends on the incoming parti-
cle content and the center-of-mass energy, which is sam-
pled from the nuclear configuration. The second condi-
tion ensures that the mean free path of a nucleon trav-
eling in a medium of uniform density is �mfp = 1/�⇢̄,
where ⇢̄ is the number density.
Two implementations of P (b) have been studied here.

The first we dub the cylinder interaction probability,

Pcyl(b) = ⇥(�/⇡ � b2), (7)

where ⇥(x) = 1 if x � 0, else ⇥(x) = 0. This probability
mimics a more classical, billiard ball like system, where
each billiard ball has a radius ⇡

p
�/⇡. The second

implementation is the Gaussian interaction probability

PGau(b) ⌘ exp

✓
�⇡b2

�

◆
, (8)

which is inspired by the work of Ref. [62]. Both
Pcyl and PGau satisfy the conditions in Eq. (6). We
use the nucleon-nucleon cross sections from the SAID
database [63] obtained using GEANT4 [64], or from the
NASA parametrization [65].

D. Phase space, Pauli blocking and
after-interaction

If an interaction occurred, the phase space of the
outgoing particles is generated using fully di↵erential
nucleon-nucleon cross sections. Note that, at the mo-
ment, we only include protons and neutrons in our INC
model. Pauli blocking enforces Fermi-Dirac statistics for
the nucleons and amounts to testing whether their final-
state momenta are above the Fermi momentum. Two dif-
ferent models of the Pauli exclusion principle have been
approximately implemented. The global and local Pauli
blocking routines essentially forbid a scattering if the mo-
mentum of any of the final state particles is below the av-
erage Fermi momentum (for the global Fermi gas model)
or the local Fermi momentum (for the local Fermi gas
model), respectively. We emphasize again that, although
we have implemented the global Fermi gas model, we do
not report any results using it.
If the interaction took place, the outgoing particles are

both treated as propagating particles, and a formation

The nucleons’ positions utilized in the INC are sampled from 36000 GFMC configurations. 
For benchmark purposes we also sampled 36000 mean-field (MF) configurations from the 
single-proton distribution.

The differences between GFMC and MF configurations are apparent when comparing the 
two-body density distributions: repulsive nature of two-body interactions reduced the 
probability of finding two particles close to each other
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Probability of interaction

9

FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated

To check if an interaction between nucleons occurs an accept-reject test is 
performed on the closest nucleon according to a probability distribution.

We use a cylinder probability distribution, this mimics a more classical 
billiard ball like system where each billiard ball has a radius 

In addition we consider a gaussian probability distribution

For benchmark purposes, we also implemented the mean free path approach, routinely used in 
event generators

P = �⇢̄d` ⇢(r1) ⇠ ⇢(r1 + d`) ⇠ ⇢̄where a constant density is assumed 

we sample a number 0  x  1 { x < P

x > P ❌

the interaction occurred, check Pauli blocking

the interaction DID NOT occur
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Results: proton-Carbon cross section
Reproducing proton-nucleus cross section 
measurements is an important test of the 
accuracy of the INC model.

7

path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

• We define a beam of protons with energy E, 
uniformly distributed over an area A. 


• We propagate each proton in time and check 
for scattering at each step. 


• The Monte Carlo cross section is defined as:


�MC = A
Nscat

Ntot

The solid lines have been obtained using the nucleon- nucleon cross sections from the SAID 
database in which only the elastic contribution is retained. The dashed lines used the NASA 
parameterization , which includes inelasticities. 
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The Gauss and cylinder probability 
distribution yield similar results 

7

path, allowing us to proceed to more complex tests of our
INC.

B. Proton-carbon Scattering Data

Reproducing the proton-nucleus cross section measure-
ments is an important test of the accuracy of the INC
model. Proton-nucleus scattering probes the nucleon-
nucleon cross section which is typically divided into two
pieces, the reaction and the elastic cross sections,

�tot = �R + �el. (12)

In the elastic part, no energy is transferred into nuclear
excitation and the nucleus remains unbroken, that is n+
A ! n+A. The reaction cross section includes transition
to nuclear excited states, n + A ! n + A⇤, as well as
inelastic reactions n + A ! X.

Several experiments have been carried out to deter-
mine the total reaction cross section, see for example
Refs. [66–71]. The latter is typically obtained by measur-
ing the total cross section from the change in intensity of
a calibrated proton beam traversing a carbon target and
then subtracting the calculated elastic cross section.

We compute �R neglecting Coulomb interactions, as
they are expected to contribute mostly to �el. We obtain
the proton-carbon scattering cross section by the follow-
ing simulation (with a di↵erent setup from the proposed
algorithm of Fig. 2). We define a beam of protons with
energy E, uniformly distributed over an area A (orthogo-
nal to the proton momenta). Note that A � ⇡R2, where
R is the radius of the carbon nucleus. The carbon nucleus
is situated in the center of the beam. We propagate each
proton in time and check for scattering at each step. The
Monte Carlo reaction cross section is then defined as the
area of the beam times the fraction of scattered events,
namely,

�MC = A
Nscat

Ntot
. (13)

This is not exactly the experimentally measured reaction
cross section. Angular and/or momentum acceptances
for the attenuated beam are finite, and we do not in-
clude these e↵ects in our calculation. Nevertheless, we
do not expect such e↵ects to change our results signif-
icantly, and thus �MC should be a good approximation
of the reaction cross section. Moreover, imposing Pauli
blocking on both outgoing nucleons will e↵ectively sup-
press the contribution of elastic transitions.

The two panels of Fig. 6 display the proton-carbon
scattering cross sections as a function of the proton ki-
netic energy. In the upper panel our Monte Carlo simu-
lations are compared with experimental data in the en-
tire energy region in which data are available [71], while
the lower panel focuses on proton kinetic energies below
200 MeV. The curves correspond to di↵erent implemen-
tations of the INC. These implementations are composed
of three ingredients, namely,

FIG. 6: Proton-carbon scattering total cross section as
a function of the incoming proton kinetic energy. In the

upper panel the entire energy range for which
experimental data are available is shown. In the lower
panel the low energy region is magnified. The red and
blue curves correspond to the cylinder algorithm where
the mean field (MF) and quantum Monte Carlo (QMC)
configurations have been used, respectively. The green
and orange curves are the same but for the Gaussian
interaction probability. The results displayed in purple
refers to the mean free path (MFP) calculations. The
solid and dashed curves corresponds to the use of the

GEANT4 [64] and NASA [65] parametrization of the cross
section in the interaction probability, respectively. The

data points are from Ref. [71]

1. Nuclear configuration: quantum Monte Carlo
(QMC) or mean field (MF);

2. Interaction model: cylinder (cyl), Gaussian
(Gauss), or mean free path (MFP);

3. Nucleon-nucleon cross section: elastic (El) or total
(Tot).

Large difference with the mean-free-path 
implementation: conceptual differences 
with respect to the previous cases

QMC and MF distribution lead to almost 
identical results: this observable does not 
depend strongly on correlations among 
the nucleons
 The solid lines have been obtained using the 

nucleon- nucleon cross sections from the SAID 
database in which only the elastic contribution is 
retained. The dashed lines used the NASA 
parameterization , which includes inelasticities. 
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Results: proton-Carbon cross section



Results: nuclear transparency
The nuclear transparency yields the 
average probability that a struck nucleon 
leaves the nucleus without interacting 
with the spectator particles 

Nuclear transparency is measured in 
(e,e’p) scattering experiments

Simulation: we randomly sample a 
nucleon with kinetic energy Tp and 
propagate it through the nuclear medium

9

FIG. 7: Carbon transparency as a function of the
proton kinetic energy. The di↵erent curves indicate
di↵erent approaches used as described in Fig. 6. The
experimental data are taken from Refs. [4, 6, 7, 74–76]

energy and scattering angle of the electron, one can un-
ambiguously define the momentum q transferred to the
target nucleus. The direction and the momentum of the
nucleon in the final state has to be determined apply-
ing energy- and momentum-conservation relations and
accounting for the Fermi motion of the struck nucleon in
the initial state. It follows that defining the kinematics of
the hadronic final state after the hard scattering depends
on the nuclear model of choice. However, in the analysis
of di↵erent experiments, the data are given as a function
of the average nucleon momentum (and kinetic energy)
given by p = q (Tp =

p
|q|2 + m2

N � mN ).
In Fig. 7 we compare the nuclear transparency data

from Refs. [4, 74] to our predictions. The di↵erent lines
are the same as for Fig. 6. We find an overall satis-
factory agreement between the Gaussian and cylinder
curves with the experimental data once inelastic e↵ects
are taken into consideration; this corresponds to the re-
sults using the NASA parametrization for the nucleon-
nucleon cross sections. For moderate to large values of
the proton kinetic energy, pions play an important role
in quenching the transparency. Moreover, the Gaussian
and cylinder curves exhibit correct behavior consistent
with the data also for small Tp where the simplified MFP
model described above fails. As in Fig. 6, we observe
very small di↵erences between the QMC and MF calcu-
lations. For low and intermediate kinetic energies, the
transparency obtained from the MFP approach is much
smaller than the corresponding results for the cylinder
and Gaussian curves.

Finally, we discuss the origin of the discrepancies be-
tween the MFP and the cylinder algorithm with MF
configurations for the p-carbon cross section and carbon
transparency. Both approaches rely on the single-nucleon
density distribution to sample the initial nucleon posi-

p
�/⇡

d`

r1
p

�/⇡

d`
x
r1

FIG. 8: Left panel: a schematic picture of an external
proton scattering o↵ the nucleus. The distance from the

proton to the center of the nucleus is r1, and the
propagation step is d`. The radius of the cylinder is

given by
p

�/⇡ where � is the interaction cross section
between the proton and a background particle; d` is

also the height of the cylinder. Right panel: same as for
the left one, but for a nucleon kicked inside the nucleus.
This follows what is done in the nuclear transparency

event simulations.

tions (nuclear correlations are neglected) but use di↵er-
ent definitions of the interaction probability. The left
panel of Fig. 8 schematically shows one contribution to
the p-carbon cross section in which the proton is at a dis-
tance r1 larger than the nuclear radius. In the cylinder
algorithm, the interaction probability is equal to one if a
particle is present in the volume defined by: V = d` · �.
Both �pp and �np have a maximum for low proton mo-
mentum values. Hence, for low momenta, the probability
of interaction could be non-vanishing even when the pro-
jectile proton is far from the center of the nucleus.
On the other hand, within the MFP approach, if the
probe is outside the nucleus then the approximation of a
constant density ⇢(r1) = 0 within the volume V = d` · �
yields a vanishing interaction probability. This di↵erent
behaviour leads to a lower p-carbon cross section using
the MFP approach, as observed in Fig. 6. When com-
puting the nuclear transparency we kick a nucleon which
is located inside the nucleus as displayed in the right
panel of Fig. 8. In this case, assuming a constant density
is more likely to overestimate the interaction probabil-
ity, especially for low momenta where the cross section is
larger. This observation is consistent with Fig. 7 where
the MFP curves predict a larger number of interactions,
and therefore a lower nuclear transparency, for small Tp.

D. Correlation e↵ects

The role played by nuclear correlations in final state in-
teractions of the recoiling nucleon has been investigated

TMC = 1� Nhits

Ntot

Gaussian and cylinder curves are consistent and correctly reproduces the data. Correlations do not 
seem to play a big role.
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Results: correlation effects
Histograms of the distance traveled by a struck particle 
before the first interaction takes place for different 
values of the interaction cross section

10

FIG. 9: The four panels corresponds to histograms of the distance traveled by a struck particle before the first
interaction takes place for di↵erent values of the interaction cross section. The results in blue and red correspond to

MF and QMC initial nucleon configurations, respectively. For each of the panels we also report the fixed
cross-section used, the total number of events generated, and the number of hits for each configuration.

in Refs. [72, 77–80]. As discussed in Ref. [81] the hit nu-
cleon is surrounded by a short-distance correlation hole
produced by both the Pauli principle and the repulsive
nature of realistic nuclear interactions. Because of this
correlation hole, the stuck nucleon is expected to freely
propagate for ⇠ 1 fm before interacting with any of the
background particles. To test the validity of these ob-
servations in our INC model, in Fig. 9 we report the
histograms of the distance traveled by a struck nucleon
before its first interaction occurs—we stop the simulation
afterwards—with each panel corresponding to a di↵erent
value of the interaction cross section. In order to gauge
the e↵ect of nuclear correlations, the initial positions of
the nucleons are sampled from either MF (blue) or QMC
(red) configurations. A random nucleon inside the nu-
cleus is recoiled and assigned a momentum of 200 MeV.
Pauli Blocking has been neglected here to isolate the de-
pendence of the results on the spatial distribution of the
nucleons. We employ the cylinder algorithm and use a
fixed cross section—which determines the cylinder base
area—varying between 0.5 and 100 mb.

For � = 0.5 and 10 mb, the volume spanned by the
propagating particle is very small. The first and second
panels of Fig. 9 clearly show the MF distribution peak-
ing toward smaller distances than the QMC distribution.
This di↵erence primarily originates from the short-range
repulsion of the AV18 potential that reduces the prob-
ability of finding two nucleons close to each other and
allows the struck particle to propagate longer before in-
teracting. This e↵ect is more pronounced for cross sec-
tions below about 10 mb = 1 fm2 since correlations a↵ect
nucleon configuration for inter-particle distances within
1 ⇠ 2 fm, as can be seen in Fig. 4. On the other hand,
larger cross sections yield larger cylinders. In this case,
the propagating particle becomes less sensitive to the lo-
cal distribution of nucleons and more sensitive to the in-
tegrated density in a larger volume, reducing the e↵ect
of correlations. For these larger cross sections, the MF
and QMC event distributions follow the same trend, as
can be seen in the lower panels of Fig. 9, corresponding
to � = 50 and 100 mb.

In each panel we also report the number of hits and the

When using QMC configurations, the hit nucleon is 
surrounded by a short-distance correlation hole: 
expected to propagate freely for ~ 1 fm before interacting

For σ=0.5 mb the MF distribution peaks toward 
smaller distances than the QMC one: originates from 
the repulsive nature of the nucleon-nucleon potential

For σ=50 mb large cylinder, MF and QMC distributions 
become similar. The propagating particle is less 
sensitive to the local distribution of nucleons and more 
sensitive to the integrated density over a larger volume, 
reducing the effect of correlations 
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Figure 2. Ground-state energies in A  16 nuclei. For each nucleus, experimental results [122] are
shown in green at the center. GFMC (AFDMC) results for the NV2+3-Ia [11] (GT+E⌧ -1.0 [89]) potential
are shown in red (blue) to the left (right) of the experimental values. For the NV2+3-Ia (GT+E⌧ -1.0)
potential, the colored bands include statistical (statistical plus systematic) uncertainties.

potential. This is because the full uncertainty evaluation includes both statistical and theoretical errors.
Both QMC methods imply statistical uncertainties of the order of few percent. For the �-less potential,
the theoretical errors coming from the truncation of the chiral expansion dominate compared to the sta-
tistical errors. Considering the next order in the chiral expansion should reduce theoretical uncertainties,
and work is currently being done in developing such potentials.

Figure 4 shows the charge radii of A  16 nuclei for the NV2+3-Ia and GT+E⌧ -1.0 potentials, with
respect to the available experimental data. The expectation value of the charge radius is derived from the
point-proton radius rpt using the relation
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the theoretical errors coming from the truncation of the chiral expansion dominate compared to the sta-
tistical errors. Considering the next order in the chiral expansion should reduce theoretical uncertainties,
and work is currently being done in developing such potentials.
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Future Prospects
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• Estimate the uncertainty of the theoretical 
calculation: can be achieved in QMC 
calculations. Work in this direction has been done 
for the energy spectra of light nuclei. The error 
band comes from the truncation of the chiral 
expansion and statistical uncertainty of the ab-
initio method

• Extend the reach of QMC methods that can use highly-realistic nuclear interactions to medium-
mass nuclei: A> 14 sampling the spin and isospin degrees of freedom to drastically reduce the 
computational cost.


• Further develop the machine-learning inversion of 
the nuclear responses to include full uncertainty 
quantification and propagation by leveraging the 
linearity of the Laplace transform. 
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preliminary

• Comparisons among QMC, SF, and Short Time 
Approximation (STA) approaches to precisely 
quantify the uncertainties inherent to the 
factorization of the final state. 

• Obtain a QMC spectral function for light and 
medium mass nuclei. Use it to compute inclusive 
and exclusive observables.  

• Intranuclear cascade: include π degrees of freedom: π production, absorption and elastic 
scattering as well as in medium corrections

Future Prospects

• Utilize inputs from lattice-QCD to describe nucleons’ properties and couplings to further 
constrain two-body dynamics.

• Understand how to model the transition between 
RES and DIS region



Thank you for your attention!
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