Quantum Gravity in the Lab Matrix Quantum Mechanics meets Quantum Computing

Enrico Rinaldi University of Michigan + (Quantum Computing + Theoretical Quantum Physics Lab. + iTHEMS) @ RIKEN 2021-10-26 NSCL/FRIB Theory Seminar

Short self-intro who am I?

- I am a computational physicist
- Worked on simulations for particle physics and dark matter models using TOP500 HPC systems
- "Interdisciplinary science is all you need"[©]
- Currently in Tokyo @ RIKEN
 Quantum Computing Center
- Previously @ AI startup in Tokyo (better view from the office)

Credit: Victor de Schwanberg/Science Photo Library

Understanding Gravity

- Einstein's General Relativity is at the heart of GPS technology
- In 2017 LIGO won the Nobel Prize for the detection of gravitational waves from black hole mergers
- In 2018 the Event Horizon
 Telescope produced the first
 "image" of the supermassive
 black hole in the Milky Way

Quantum Field Theory

- The Standard Model of particle physics is our most precise description of the subatomic world
- It is a Quantum Field Theory, a very complicated many-body quantum system obeying the rules of quantum mechanics

V

Quantum Field Theory

- The Standard Model of particle physics is our most precise description of the subatomic world
- It is a Quantum Field Theory, a very complicated many-body quantum system obeying the rules of quantum mechanics
- Some pieces of this description of the world are still missing:

V

Quantum Field Theory

- The Standard Model of particle physics is our most precise description of the subatomic world
- It is a Quantum Field Theory, a very complicated many-body quantum system obeying the rules of quantum mechanics
- Some pieces of this description of the world are still missing:
 - What is the quantum theory for gravity?

V

quantum mechanical process

Information going into the black hole

Information Paradox

1

Black Hole

quantum mechanical process

Information going into the black hole

Information Paradox

1

Black Hole

Introduction to Matrix Models

- Introduction to Matrix Models
- Numerical techniques for matrix quantum mechanics:
 - Truncated Hamiltonian
 - Quantum Computing
 - Deep Learning
 - Path integral Monte Carlo

- Introduction to Matrix Models
- Numerical techniques for matrix quantum mechanics:
 - Truncated Hamiltonian
 - Quantum Computing
 - Deep Learning
 - Path integral Monte Carlo
- Conclusions and challenges

Matrix Quantum Mechanics Motivations

\star Holographic duality \rightarrow a quantum field theory "is" a gravitational theory DO-branes and open strings ⇔ Black hole in Type IIA superstring

(p+1)-dim SYM gauge theory

Dp - branes

Black p-brane in 10D Supergravity

Matrix Quantum Mechanics Motivations

- \star Holographic duality \rightarrow a quantum field theory "is" a gravitational theory • DO-branes and open strings \Leftrightarrow Black hole in Type IIA superstring
- \star Gauge/gravity duality \rightarrow use QFT to study QG (*i.e.* emergent geometry) Supersymmetric QFT can be dimensionally reduced to matrix QM

(0+1)-dim maximally supersymmetric gauge theory

Matrix Quantum Mechanics Interpretation

 $L = \frac{1}{2g_{YM}^2} \operatorname{Tr}\left\{ \left(D_t X_M \right)^2 + \left[X_M, X_{M'} \right]^2 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma_{\alpha\beta}^M [X_M, \psi^{\beta}] \right\}$

obtained from $\mathcal{N}=1$ U(N) SYM in (9+1)d via dimensional reduction to (0+1)d or equivalently from $\mathcal{N}=4$ U(N) SYM in (3+1)d: it is maximally supersymmetric

 $S = \int_{0}^{1/I} dt L$

 $\lambda = g_{\rm YM}^2 N$

't Hooft coupling

 $X_M, M = 1, \dots, 9 \ (N \times N) \to \text{hermitian scalars}$ $\psi^{\alpha}, \alpha = 1, \dots, 16 \ (N \times N) \to \text{adjoint fermions}$ $D_t \cdot = \partial_t \cdot -i[A_t, \cdot] \to \text{gauge covariant derivative}$

Matrix Quantum Mechanics Interpretation $L = \frac{1}{2q_{_{VM}}^2} \operatorname{Tr}\left\{ (D_t X_M)^2 + [X_M, X_{M'}]^2 + i\bar{\psi}^{\alpha} D_t \psi^{\beta} + \bar{\psi}^{\alpha} \gamma^M_{\alpha\beta} [X_M, \psi^{\beta}] \right\}$

obtained from $\mathcal{N}=1$ U(N) SYM in (9+1)d via dimensional reduction to (0+1)d or equivalently from $\mathcal{N}=4$ U(N) SYM in (3+1)d: it is maximally supersymmetric

 $S = \int_{0}^{1/T} dt L$

 $\lambda = g_{\rm YM}^2 N$

't Hooft coupling

 $X_M, M = 1, \dots, 9 \ (N \times N) \rightarrow \text{hermitian scalars}$ $\psi^{\alpha}, \alpha = 1, \dots, 16 \ (N \times N) \rightarrow \text{adjoint fermions}$ $D_t \cdot = \partial_t \cdot -i[A_t, \cdot] \rightarrow$ gauge covariant derivative

Matrix Quantum Mechanics Interpretation

$$L = \frac{1}{2g_{YM}^2} \operatorname{Tr} \left\{ \left(D_t X_M \right)^2 + \left[X_M \right] \right\}$$

$$X_M, M = 1, \dots, 9 \ (N \times N) \to \text{hermitian scalars}$$

 $\psi^{\alpha}, \alpha = 1, \dots, 16 \ (N \times N) \to \text{adjoint fermions}$
 $D_t \cdot = \partial_t \cdot -i[A_t, \cdot] \to \text{gauge covariant derivative}$

Matrix Quantum Mechanics Interpretation

Numerical Methods

★HPC simulations using Path Integral-based methods on discrete grids: Monte Carlo sampling of quantum mechanical paths.

→ Challenges:

- Sign problem → paths are not weighted with a standard probability distribution (*i.e.* chem. pot., time evolution)
- Wave function → physics applications require knowledge of entanglement (*i.e.* information paradox)

Numerical Methods

★HPC simulations using Path Integral-based methods on discrete grids: Monte Carlo sampling of quantum mechanical paths.

→ Challenges:

- Sign problem → paths are not weighted with a standard probability distribution (*i.e.* chem. pot., time evolution)
- Wave function → physics applications require knowledge of entanglement (*i.e.* information paradox)

Quantum Computers
→ Represent the entire wave function using quantum bits (qubits)

→ Represent the real and imaginary part of the complex wave function using expressive neural networks

- Feynman (1981): "Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem because it doesn't look so easy."
- Digital QC (~50 qubits \rightarrow 1000 in 2 yr.) have opened new avenues for both scientific research and industrial applications

Quantum Technologies the next computing revolution

Bosonic Model

 $\hat{H}_{B2} = \text{Tr}\left(\frac{1}{2}\hat{P}_{I}^{2} + \frac{m^{2}}{2}\hat{X}_{I}^{2} - \frac{g^{2}}{4}\left[\hat{X}_{I}, \hat{X}_{J}\right]^{2}\right)$

Physical states are invariant under SU(N) Gauge Symmetry

Supersymmetric Model

$$\begin{split} \hat{H} &= \hat{H}_{B2} + \\ &+ \mathrm{Tr} \left(\frac{g}{2} \hat{\xi} \left[-\hat{X}_1 - i\hat{X}_2, \hat{\xi} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \hat{\xi}^{$$

Bosonic Model

$$\hat{H}_{B2} = \text{Tr}\left(\frac{1}{2}\hat{P}_{I}^{2} + \frac{m^{2}}{2}\hat{X}_{I}^{2} - \frac{g^{2}}{4}\left[\hat{X}_{I}, \hat{X}_{J}\right]^{2}\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 $\hat{X}^{\alpha}_{I} \rightarrow \text{bosonic degrees of freedom}$ $\tau_{\alpha} \rightarrow \text{generators of SU(N) group}$ Supersymmetric Model

$$\begin{split} \hat{H} &= \hat{H}_{B2} + \\ &+ \mathrm{Tr} \left(\frac{g}{2} \hat{\xi} \left[-\hat{X}_1 - i\hat{X}_2, \hat{\xi} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \hat{\xi}^{\dagger} \left[-\hat{X}_1 + i\hat{X}_2, \hat{\xi}^{\dagger} \right] + \frac{g}{2} \hat{\xi}^{\dagger} \hat{\xi}^{$$

Bosonic Model

$$\hat{H}_{B2} = \text{Tr}\left(\frac{1}{2}\hat{P}_{I}^{2} + \frac{m^{2}}{2}\hat{X}_{I}^{2} - \frac{g^{2}}{4}\left[\hat{X}_{I}, \hat{X}_{J}\right]^{2}\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 \hat{X}^{α}_{I} \rightarrow bosonic degrees of freedom \rightarrow generators of SU(N) group τ_{α}

Supersymmetric Model

Bosonic Model

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 \hat{X}^{α}_{I} \rightarrow bosonic degrees of freedom \rightarrow generators of SU(N) group τ_{α}

Supersymmetric Model

Bosonic Model

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 \hat{X}^{α}_{I} \rightarrow bosonic degrees of freedom \rightarrow generators of SU(N) group τ_{α}

Supersymmetric Model

Bosonic Model

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 \hat{X}^{α}_{I} \rightarrow bosonic degrees of freedom \rightarrow generators of SU(N) group τ_{α}

Supersymmetric Model

ξα

Bosonic Model

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 \hat{X}^{α}_{I} \rightarrow bosonic degrees of freedom \rightarrow generators of SU(N) group au_{lpha}

Supersymmetric Model

Bosonic Model

ξα

 \rightarrow generators of SU(N) group

 τ_{α}

Supersymmetric Model

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 $\begin{array}{ll} \hat{X}_{I}^{\alpha} & \rightarrow \text{ bosonic degrees of freedom} \\ \tau_{\alpha} & \rightarrow \text{ generators of SU(N) group} \end{array}$

[Rinaldi et al., <u>arxiv:2108.02942]</u>

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 $\begin{array}{ll} \hat{X}_{I}^{\alpha} & \rightarrow \text{ bosonic degrees of freedom} \\ \tau_{\alpha} & \rightarrow \text{ generators of SU(N) group} \end{array}$

Example: N=2, D=2

$$\hat{H}_B = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^2 + \frac{m^2}{2} \hat{X}_{I\alpha}^2 \right) + \frac{g^2}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_I^\alpha \hat{X}_J^\beta \right)^2 \qquad I = 1,2 \qquad \alpha$$

(1) (2) (3)
$$I = 1$$

(4) (5) (6) $I = 2$

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 $\begin{array}{ll} \hat{X}_{I}^{\alpha} & \rightarrow \text{ bosonic degrees of freedom} \\ \tau_{\alpha} & \rightarrow \text{ generators of SU(N) group} \end{array}$

Example: N=2, D=2

$$\hat{H}_{B} = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^{2} + \frac{m^{2}}{2} \hat{X}_{I\alpha}^{2} \right) + \frac{g^{2}}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_{I}^{\alpha} \hat{X}_{J}^{\beta} \right)^{2} \qquad I = 1,2 \qquad 0$$
SYMMETRIES

(1) (2) (3)
$$I = 1$$

(4) (5) (6) $I = 2$

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_I = \sum_{\alpha=1}^{N^2 - 1} \hat{X}_I^{\alpha} \tau_{\alpha} \qquad I = 1, \dots, D$$

 $\begin{array}{ll} \hat{X}_{I}^{\alpha} & \rightarrow \text{ bosonic degrees of freedom} \\ \tau_{\alpha} & \rightarrow \text{ generators of SU(N) group} \end{array}$

Example: N=2, D=2

$$\hat{H}_B = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^2 + \frac{m^2}{2} \hat{X}_{I\alpha}^2 \right) + \frac{g^2}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_I^\alpha \hat{X}_J^\beta \right)^2 \qquad I = 1,2$$

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_{I} = \sum_{\alpha=1}^{N^{2}-1} \hat{X}_{I}^{\alpha} \tau_{\alpha} \qquad I = 1, ..., D$$

 $\hat{X}^{\alpha}_{I} \rightarrow \text{bosonic degrees of freedom}$ $\tau_{\alpha} \rightarrow \text{generators of SU(N) group}$

Example: N=2, D=2

$$\hat{H}_{B} = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^{2} + \frac{m^{2}}{2} \hat{X}_{I\alpha}^{2} \right) + \frac{g^{2}}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_{I}^{\alpha} \hat{X}_{J}^{\beta} \right)^{2} \qquad I = 1,2 \qquad \text{of symmetries}$$

 $|\mathrm{UM}\rangle = \left(\bigotimes_{I,\alpha} |0\rangle_{I\alpha}\right)$

Bosonic Model

$$\hat{H}_B = \operatorname{Tr}\left(\left(\frac{1}{2}\hat{P}_I^2 + \frac{m^2}{2}\hat{X}_I^2\right) - \frac{g^2}{4}\left[\hat{X}_I, \hat{X}_J\right]^2\right)$$

Physical states are invariant under SU(N) Gauge Symmetry

$$\hat{X}_{I} = \sum_{\alpha=1}^{N^{2}-1} \hat{X}_{I}^{\alpha} \tau_{\alpha} \qquad I = 1, ..., D$$

 $\hat{X}^{\alpha}_{I} \rightarrow \text{bosonic degrees of freedom}$ $\tau_{\alpha} \rightarrow \text{generators of SU(N) group}$

Example: N=2, D=2

$$\hat{H}_{B} = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^{2} + \frac{m^{2}}{2} \hat{X}_{I\alpha}^{2} \right) + \frac{g^{2}}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_{I}^{\alpha} \hat{X}_{J}^{\beta} \right)^{2} \qquad I = 1,2 \qquad \text{a}$$
Symmetries

I = 1

= 2

Ę

 $|\text{UM}\rangle = \left(\bigotimes_{I,\alpha} |0\rangle_{I\alpha}\right) \longrightarrow_{g^2 > 0}$

|Ground State $\rangle = (???)$

Hilbert space regularization Truncation

Hilbert space regularization Truncation

6

 $\Lambda - 1$

Hilbert space regularization Truncation

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

ttps://github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

• **Benchmark**: compute the lowest states via exact diagonalization

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

tps://github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- Benchmark: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

tps://github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

<u>/github.com/erinaldi/bmn2-qutip</u>

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

[Rinaldi et al., <u>arxiv:2108.02942</u>]

 $E_0 = \left\langle E_0 | \hat{H} | E_0 \right\rangle$

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

//github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

//github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

<u>ttps://github.com/erinaldi/bmn2-qutip</u>

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

[Rinaldi et al., <u>arxiv:2108.02942</u>]

 $\langle \rangle_{I\beta} = 0$

os://github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

• Study a perturbed Hamiltonian with gauge penalty: increase energy iff not singlet

[Rinaldi et al., <u>arxiv:2108.02942</u>]

$\hat{H}' = \hat{H} + \boldsymbol{c} \sum \hat{G}_{\alpha}^2$

 $\rangle_{I\beta} = 0$

//github.com/erinaldi/bmn2-qutip

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- **Benchmark**: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

 Study a perturbed Hamiltonian with gauge penalty: increase energy iff not singlet

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

- Benchmark: compute the lowest states via exact diagonalization
- Study the convergence to $\Lambda \rightarrow \infty$
- Study the effects of different couplings
- Study the gauge-singlet constraint

$$\hat{G}_{\alpha} = i \sum_{\beta,\gamma,I} f_{\alpha\beta\gamma} \hat{a}_{I\beta}^{\dagger} \hat{a}_{I\gamma} \longrightarrow \hat{G}_{\alpha} \left(\bigotimes_{I,\beta} | 0 \right)$$

 Study a perturbed Hamiltonian with gauge penalty: increase energy iff not singlet

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

∧ = 4

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Each boson is 1 qubit

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Each boson is 1 qubit

 $\log_2 \Lambda^6 = 6$ qubits

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Each boson is 1 qubit

 $\log_2 \Lambda^6 = 6$ qubits

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Each boson is 1 qubit

 $\log_2 \Lambda^6 = 6$ qubits

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

[Rinaldi et al., <u>arxiv:2108.02942</u>]

$$\hat{H}_B = \sum_{\alpha,I} \left(\frac{1}{2} \hat{P}_{I\alpha}^2 + \frac{m^2}{2} \hat{X}_{I\alpha}^2 \right) + \frac{g^2}{4} \sum_{\gamma,I,J} \left(\sum_{\alpha,\beta} f_{\alpha\beta\gamma} \hat{X}_I^\alpha \hat{X}_J^\beta \right)^2 \qquad I = 1,2 \qquad \alpha$$

Build matrix Hamiltonian which gets mapped to qubits

Qubitization of MQM Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Truncation Level

Rewrite $X_i \rightarrow a_i$ Annihilation operator for site "i"

$$\begin{aligned} \hat{a}_{i} &= \hat{I}_{1} \otimes \ldots \otimes \hat{I}_{i-1} \otimes \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \otimes \hat{I}_{i+1} \otimes \ldots \\ \hat{a}_{i} &= \hat{I}_{1} \otimes \ldots \otimes \hat{I}_{i-1} \otimes \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & \sqrt{3} \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \hat{I}_{i+1} \otimes \ldots \\ \hat{H}_{B} &= \sum_{\alpha, l} \left(\frac{1}{2} \hat{P}_{l\alpha}^{2} + \frac{m^{2}}{2} \hat{X}_{l\alpha}^{2} \right) + \frac{g^{2}}{4} \sum_{\gamma, l, l} \left(\sum_{\alpha, \beta} f_{\alpha \beta \gamma} \hat{X}_{l}^{\alpha} \hat{X}_{l}^{\beta} \right)^{2} \qquad l = 1, 2 \qquad \alpha \end{aligned}$$

Build matrix Hamiltonian which gets mapped to qubits

-₩₩~~

Quantum Computing Variational Quantum Eigensolver - VQE

-////~~

Quantum Computing Variational Quantum Eigensolver - VQE

┙║Ѡѵ┉

Quantum Computing Variational Quantum Eigensolver - VQE

PQC \rightarrow Variational Ansatz for $|\Phi\rangle$

Evaluation of cost function $\rightarrow E(\theta)$

Optimize parameters $\rightarrow \theta^*$

VQE details Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Λ = 2	$\log_2 \Lambda^6 = 6$ qubits

VQE details Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Choose Variational Ansatz

Λ = 2	$\log_2 \Lambda^6 = 6$ qubits
https://github.com/erinaldi/bmn2-qiskit

VQE details Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Choose Variational Ansatz

PQC \rightarrow Variational Ansatz for $|\Phi\rangle$

$\Lambda = 2$ $\log_2 \Lambda^6 = 6$ qubits Choose Variational Ansatz

PQC \rightarrow Variational Ansatz for $|\Phi\rangle$

Run each multiple instances of PQC from different initial points

Run each multiple instances of PQC from different initial points

[Rinaldi et al., <u>arxiv:2108.02942]</u>

Choose Quantum Simulator

Run each multiple instances of PQC from different initial points

[Rinaldi et al., <u>arxiv:2108.02942]</u>

Choose Quantum Simulator

Evaluation of cost function $\rightarrow E(\theta)$

Statevector simulator

Run each multiple instances of PQC from different initial points

[Rinaldi et al., <u>arxiv:2108.02942]</u>

Choose Quantum Simulator

Choose Classical Optimizer

Evaluation of cost function $\rightarrow E(\theta)$

Statevector simulator

Run each multiple instances of PQC from different initial points

Choose Quantum Simulator Choose Classical Optimizer Evaluation of cost function $\rightarrow E(\theta)$ Optimize parameters $\rightarrow \theta^*$

Statevector simulator

- Least SQuares Programming optimizer (SLSQP)
- Constrained Optimization By Linear Approximation optimizer (COBYLA)
- Limited-memory BFGS Bound optimizer (L-BFGS-B)
- **Nelder-Mead**

Run each optimizer with a max. number of iterations

Qiskit

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Optimizer	Var. form: R_y			Var. form: $R_y R_z$				
	Min.	Max.	Mean	Std.	Min.	Max.	Mean	St
COBYLA	3.149370	4.147156	3.159740	0.099739	3.149157	3.150034	3.149862	0.0
L-BFGS-B	3.149268	4.150000	3.159886	0.100012	3.149375	4.148751	3.159925	0.0
SLSQP	3.149397	4.150000	3.164968	0.111340	3.149377	4.149946	3.164980	0.1
NELDER-MEAD	3.148972	3.195922	3.150774	0.005065	3.149516	4.149891	3.171468	0.1

PQC with y rotation gates: depth = $3 \rightarrow 24$ parameters | Best out of 100 runs

Qiskit

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

Optimizer	Var. form: R_y				Var. form: $R_y R_z$			
	Min.	Max.	Mean	Std.	Min.	Max.	Mean	St
COBYLA	3.137059	4.769101	3.251414	0.347646	3.137237	4.782013	3.378628	0.4
L-BFGS-B	3.137059	5.769553	3.283462	0.434162	3.137050	4.286367	3.243110	0.3
SLSQP	3.137060	5.769554	3.327706	0.471957	3.137059	4.232419	3.236925	0.2
NELDER-MEAD	3.137471	5.713976	3.492673	0.478810	3.273614	6.443055	4.428032	0.7

PQC with y rotation gates: depth = $3 \rightarrow 24$ parameters | Best out of 100 runs

https://github.com/erinaldi/bmn2-qiskit

Results Small-scale: N=2, D=2, $\Lambda \rightarrow \infty$

 $\log_2 \Lambda^6 = 12$ qubits $\Lambda = 4$

https://github.com/erinaldi/bmn2-qiskit

Results Supersymmetric N=2 D=2 at large coupling

		C	lepth = 5			depth = 9	
λ	COBYLA	L-BFGS-B	SLSQP	NELDE	ER-MEAD	Best	HT (exa
0.5	0.088492	0.139702	0.134517	0.40600	3	0.02744	0.01690
1.0	0.135800	0.219268	0.308781	0.75245	9	0.07900	0.04829
2.0	0.387977	0.622704	0.522396	1.27193	9	0.17688	0.08385

$$\psi_{\theta}(X) = \left\langle X \mid \psi_{\theta} \right\rangle$$

$$\theta_{\theta} \Big|^{2} \qquad \theta' = \theta - \beta \nabla_{\theta} E_{\theta}$$

$$\psi_{\theta}(X) = \left\langle X \mid \psi_{\theta} \right\rangle$$

$$X \sim |\psi_{\theta}|^{2} \left[\epsilon_{\theta}(X) \right]$$

$$\theta_{\theta} \Big|^{2} \qquad \theta' = \theta - \beta \nabla_{\theta} E_{\theta}$$

Evaluation of cost function $\rightarrow E(\theta)$

$$E_{\theta} \equiv \left\langle \psi_{\theta} | \hat{H} | \psi_{\theta} \right\rangle = \int dX \left| \psi_{\theta}(X) \right|^{2} \cdot \frac{\left\langle X | \hat{H} | \psi_{\theta} \right\rangle}{\psi_{\theta}(X)} = \mathbf{E}_{X \sim \left| \psi_{\theta} \right|^{2}} \left[\epsilon_{\theta}(X) \right]$$

$$\nabla_{\theta} E_{\theta} = \mathbf{E}_{X \sim |\psi_{\theta}|^{2}} \left[\nabla_{\theta} \epsilon_{\theta}(X) \right] + \mathbf{E}_{X \sim |\psi_{\theta}|^{2}} \left[\epsilon_{\theta}(X) \nabla_{\theta} \ln |\psi_{\theta}|^{2} \right] \qquad \theta' = \theta - \beta \nabla_{\theta} E_{\theta}$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

Choice of Neural Network Architecture

Evaluation of cost function $\rightarrow E(\theta)$

$$\nabla_{\theta} E_{\theta} = \mathbf{E}_{X \sim |\psi_{\theta}|^{2}} \left[\nabla_{\theta} \epsilon_{\theta}(X) \right] + \mathbf{E}_{X \sim |\psi_{\theta}|^{2}} \left[\epsilon_{\theta}(X) \nabla_{\theta} \ln |\psi_{\theta}|^{2} \right]$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

Evaluation of cost function $\rightarrow E(\theta)$

Wave function

 $\psi(X) = |\psi(X)| e^{i\theta(X)}$

Wave function

Wave function

 $\psi(X) = |\psi(X)| e^{i\theta(X)}$

 $p_{\theta}(X) = p\left(x_1; F_{\theta}^0\right) p\left(x_2; F_{\theta}^1\right)$

$$|\psi(X)| = \sqrt{p_{\theta}(X)}$$

$$(x_1) p(x_3; F_{\theta}^2(x_1, x_2))...$$

Autoregressive Flow

Wave function

Autoregressive Flow

Wave function

Autoregressive Flow

Wave function

 $A_{\rho}^{i,a}(\overrightarrow{x}) = M_{\rho}^{i,a} \cdot \overrightarrow{x} + \overrightarrow{b}_{\rho}^{i,a}$

Wave function

 $A_{\rho}^{i,a}(\overrightarrow{x}) = M_{\rho}^{i,a} \cdot \overrightarrow{x} + \overrightarrow{b}_{\rho}^{i,a}$

Wave function

 $A_{\theta}^{i,a}(\overrightarrow{x}) = M_{\theta}^{i,a} \cdot \overrightarrow{x} + \overrightarrow{b}_{\theta}^{i,a}$

$$|\psi(X)| = \sqrt{p_{\theta}(X)}$$
$$X = [x_1, ..., x_6]$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

$$|\psi(X)| = \sqrt{p_{\theta}(X)}$$

$$X = [x_1, \dots, x_6]$$

$$E_{\theta'} = \mathbf{E}_{X \sim |\psi_{\theta'}|^2} [\epsilon_{\theta'}(X)]$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

Evaluation of cost function $\rightarrow E(\theta)$

$$|\psi(X)| = \sqrt{p_{\theta}(X)}$$

$$X = [x_1, \dots, x_6]$$

$$E_{\theta'} = \mathbf{E}_{X \sim |\psi_{\theta'}|^2} [\epsilon_{\theta'}(X)]$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

Evaluation of cost function $\rightarrow E(\theta)$

$$|\psi(X)| = \sqrt{p_{\theta}(X)}$$

$$X = [x_1, \dots, x_6]$$

$$E_{\theta'} = \mathbf{E}_{X \sim |\psi_{\theta'}|^2} [\epsilon_{\theta'}(X)]$$

NQS \rightarrow Variational Ansatz for $|\Phi\rangle$

Evaluation of cost function $\rightarrow E(\theta)$

 θ

Results Small-scale: N=2, D=2

$$\psi(X)| = \sqrt{p_{\theta}(X)}$$

$$X = [x_1, \dots, x_6]$$

$$E_{\theta'} = E_{X \sim |\psi_{\theta'}|^2} [\epsilon_{\theta'}(X)]$$

dependence on hidden layer units α

α	1	2	5	10	20	50	HT (exact)
$\lambda = 0.2$	3.137(2)	3.137(2)	3.140(2)	3.138(2)	3.137(2)	3.135(2)	3.134
$\lambda = 0.5$	3.313(2)	3.312(2)	3.308(2)	3.307(2)	3.302(2)	3.305(2)	3.297
$\lambda = 1.0$	3.544(3)	3.544(2)	3.541(3)	3.528(2)	3.519(2)	3.520(2)	3.516
$\lambda = 2.0$	3.914(3)	3.910(3)	3.892(3)	3.872(3)	3.857(3)	3.859(3)	3.854

$\int OIOUIIG OIUIC / - \psi_{\mu}$	I	Ground	State	$\rangle = \psi_{e}$
-------------------------------------	---	--------	-------	----------------------

$$E_{\theta^{\star}} = \mathbf{E}_{X \sim |\psi_{\theta^{\star}}|^2} \left[\epsilon_{\theta^{\star}} \right]^2$$

$\psi_{\theta^{\star}}(X)$ $\epsilon_{\theta^{\star}}(X)$

L

L

- lattice spacing "a"
- lattice size "L"

L

- lattice spacing "a"
- lattice size "L"

• Keep all d.o.f. of the theory

- not a model!
- no simplifications

L

- Discretize space and time
 - lattice spacing "a"
 - lattice size "L"
- Keep all d.o.f. of the theory
 - not a model!
 - no simplifications
- Amenable to numerical methods
 - Monte Carlo sampling
 - use supercomputers

L

- Discretize space and time
 - lattice spacing "a"
 - lattice size "L"
- Keep all d.o.f. of the theory
 - not a model!
 - no simplifications
- Amenable to numerical methods
 - Monte Carlo sampling
 - use supercomputers
- Precisely quantifiable and improvable errors
 - Systematic
 - Statistical

- Discretize space and time
 - lattice spacing "a"
 - lattice size "L"
- Keep all d.o.f. of the theory
 - not a model!
 - no simplifications
- Amenable to numerical methods
 - Monte Carlo sampling
 - use supercomputers
- Precisely quantifiable and improvable errors
 - Systematic
 - Statistical

Path Integral Monte Carlo Lattice Gauge Theory Primer

Discretize space and time

- lattice spacing "a"
- lattice size "L"

Keep all d.o.f. of the theory

- not a model!
- no simplifications

menable to numerical hods Monte Carlo sampling use supercomputers

- Precisely quantifiable and improvable errors
 - Systematic
 - Statistical

Results Small-scale: N=2, D=2

Parameters:

- Temperature
- Number of lattice sites

Observables:

• Energy

No truncation Λ

Results Small-scale: N=2, D=2

Parameters:

- Temperature
- Number of lattice sites

Observables:

• Energy

Global Extrapolation

[Rinaldi et al., <u>arxiv:2108.02942</u>]

No truncation Λ

Results Small-scale: N=2, D=2

Parameters:

- Temperature
- Number of lattice sites

Observables:

• Energy

Global Extrapolation

No truncation Λ

Local Extrapolation

Comparison Ground state energy

Bosonic Model

D=2	HT	VQE	DL	MC
N=2		∧ = 2,4		
N=3		×		
N>3	×	×		

Supersymmetric Model

•	•	
•	•	

D=2	HT	VQE	DL	MC
N=2		∧ = 4		
N=3		X		
N>3		×		

Comparison Benchmarking different methods

Bosonic Model

		$\lambda = 0.5$	$\lambda = 1.0$	$\lambda = 2.0$
	$E_{0,\mathrm{HT}}$	3.297	3.516	3.855
$\mathbf{\hat{\mathbf{A}}}$	$E_{0,\mathrm{DL}}$	3.302(2)	3.519(2)	3.857(3)
•••	$E_{0,\mathrm{MC}}$	3.312(26)	3.497(33)	3.847(30)
/ /////	$E_{0,\text{VQE}}$	3.309	3.547	3.933

SU(2)

		$\lambda = 0.5$	$\lambda = 1.0$	$\lambda = 2.0$
	$E_{0,\mathrm{DL}}$	8.824(7)	9.432(7)	10.426(8)
•••	$E_{0,\mathrm{MC}}$	8.836(38)	9.381(38)	10.236(41)

Supersymmetric Model

		$\lambda = 0.5$	$\lambda = 1.0$	$\lambda = 2.0$
	$E_{0,\mathrm{HT}}$	0.000	0.000	0.000
	$E_{0,\mathrm{DL}}$	0.009(5)	0.014(6)	0.034(7)
-///////	$E_{0,\text{VQE}}$	0.027	0.079	0.177

SU(2)

2)

Conclusions and roadmap

- Quantum simulations and deep learning can be used for addressing Quantum **Gravity** problems, using the holographic duality
- study small-size matrix models. On the road to larger systems!
- Fast sampling from generative models allows an efficient representation of the ground state of matrix models
- simulations could be crucial with current resources: lead to simpler PQC??
- Error-mitigation will be important on real quantum hardware

Hybrid quantum-classical algorithms can be used on current quantum hardware to

Finding efficient parametrized quantum circuits for supersymmetric matrix models is very important: study new PQC construction methods (big industry right now)

Using machine learning or tensor network approximations to simplify quantum

THE MATH BEHIND SIMULATIONS

LATTICE QUANTUM FIELD THEORY – MATHEMATICS

$$\mathcal{L}_{QCD} = -\frac{1}{4}F^2 + \bar{\psi}(i\mathcal{D} + m)\psi$$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi \ \mathcal{D}\bar{\psi} \ \mathcal{D}U \ e^{-S[\bar{\psi},\psi,U]} \mathcal{C}$$

 $\{U_1, U_2, U_3, \ldots, U_N\}$

N $\approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}\left[U_i\right] + O\left(\frac{1}{\sqrt{N}}\right)$

MICROSCOPIC THEORY OF FIELDS

ψ: quark field

U: gauge field

QUANTUM FEYNMAN PATH INTEGRAL

Physical observable

Makes integral finite dimens.

MARKOV CHAIN MONTE CARLO

Sampling

IMPORTANCE SAMPLING

Estimator

LATTICE QUANTUM FIELD THEORY – MATHEMATICS

$$\mathcal{L}_{QCD} = -\frac{1}{4}F^2 + \bar{\psi}(i\not{D} + m)\psi$$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\psi \ \mathcal{D}\bar{\psi} \ \mathcal{D}U \ e^{-S[\bar{\psi},\psi,U]} \mathcal{C}$$

 $\{U_1, U_2, U_3, \ldots, U_N\}$

MICROSCOPIC THEORY OF FIELDS

ψ: quark field

U: gauge field

QUANTUM FEYNMAN PATH INTEGRAL

Physical observable

Makes integral finite dimens.

MARKOV CHAIN MONTE CARLO

Sampling

IMPORTANCE SAMPLING

Estimator

THE MATH BEHIND SIMULATIONS

LATTICE QUANTUM FIELD THEORY – MATHEMATICS

$$\mathcal{L}_{QCD} = -\frac{1}{4}F^2 + \bar{\psi}(i\not{D} + m)\psi$$
$$\langle \mathcal{O} \rangle = \underbrace{\frac{1}{\mathcal{Z}}} \int \mathcal{D}\psi \ \mathcal{D}\bar{\psi} \ \mathcal{D}U \left(e^{-S[\bar{\psi},\psi,U]} \right)$$
$$\{U_1, U_2, U_3, \dots, U_N\}$$
$$\approx \frac{1}{N} \sum_{i=1}^N \mathcal{O}[U_i] + O\left(\frac{1}{\sqrt{N}}\right)$$

MICROSCOPIC THEORY OF FIELDS ψ: quark field

U: gauge field

QUANTUM FEYNMAN PATH INTEGRAL

Physical observable

Makes integral finite dimens.

move in configuration space with prob.

MARKOV CHAIN MONTE CARLO

Sampling

IMPORTANCE SAMPLING

Estimator

THE MATH BEHIND SIMULATIONS

LATTICE QUANTUM FIELD THEORY – MATHEMATICS

$$\mathcal{L}_{QCD} = -\frac{1}{4}F^2 + \bar{\psi}(i\not{D} + m)\psi$$

$$\langle \mathcal{O} \rangle = \left(\frac{1}{\mathcal{Z}}\right) \int \mathcal{D}\psi \ \mathcal{D}\bar{\psi} \ \mathcal{D}U \left(e^{-S[\bar{\psi},\psi,U]}\right)$$

$$\left\{U_1, U_2, U_3, \dots, U_N\right\}$$

$$\approx \frac{1}{N} \sum_{i=1}^N \mathcal{O}\left[U_i\right] + O\left(\frac{1}{\sqrt{N}}\right)$$

