PAN - 2017 - problems based on nuclear Energy Density Functional theory

- 1. Where is the proton drip line for A=32 and how does it compare with experiment?
- 2. Where is the neutron drip line for A=32 and how does it compare with experiment?
- 3. How does the nucleus 32 Ar decay?
- 4. How does the nucleus ^{32}Mg decay?
- 5. Look at the densities for ³⁴Si. This is called a bubble nucleus for protons because of the hole in the proton density near the center. Why does this happen?
- 6. The nucleus ⁶⁰Ca will be studied by FRIB. Do you expect this to be a magic nucleus for protons? for neutrons?
- 7. Make a plot of the neutron skin vs number of neutrons for 12,14,16,18,20,22 C. The relatively large increase for 22 C is due to the large radius of the loosely bound $2s_{1/2}$ state. This is called a halo state.
- 8. What is the predicted total angular momentum for the ground state of ⁴⁹Ca? How does it compare with experiment?
- 9. What is the predicted total angular momentum for the ground state of ⁷⁹Ni? This will be measured with FRIB.