User Tools

Site Tools


detectors

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
detectors [2013/12/13 18:56]
pereira [Ionization Chamber]
detectors [2013/12/13 19:04]
pereira [Hodoscope]
Line 42: Line 42:
  
  
-{{:wiki:crdc-section-drift.jpg?600|Principle of operation of a CRDC.}}+{{:wiki:crdc-section-drift.jpg?500|Principle of operation of a CRDC.}}
  
  
Line 52: Line 52:
 An ionization chamber downstream of both [[Detectors#Cathode Readout Drift Chambers (CRDC)|CRDCs]] is used to identify the Z number of the transmitted nuclei from their energy loss. The detector has an active volume of __xxx cm x xxx cm x xxx cm__ and is filled with P10 gas (90% argon, 10% methane) at a typical pressure of 300 torr, although this value can be increased up to 600 torr for light nuclei. The detector consists of 16 stacked-parallel plate ion chambers with narrow anode-cathode gaps, placed along the detector’s central axis, perpendicular to the beam direction (see picture below). The plates are constructed from 70 mg/cm<sup>2</sup> polypropylene with 0.05 µm of aluminum evaporated on each side. The entrance and exit windows of the chamber are made of 14 mg/cm<sup>2</sup> Mylar with an overlay of Kevlar filaments and epoxy. An ionization chamber downstream of both [[Detectors#Cathode Readout Drift Chambers (CRDC)|CRDCs]] is used to identify the Z number of the transmitted nuclei from their energy loss. The detector has an active volume of __xxx cm x xxx cm x xxx cm__ and is filled with P10 gas (90% argon, 10% methane) at a typical pressure of 300 torr, although this value can be increased up to 600 torr for light nuclei. The detector consists of 16 stacked-parallel plate ion chambers with narrow anode-cathode gaps, placed along the detector’s central axis, perpendicular to the beam direction (see picture below). The plates are constructed from 70 mg/cm<sup>2</sup> polypropylene with 0.05 µm of aluminum evaporated on each side. The entrance and exit windows of the chamber are made of 14 mg/cm<sup>2</sup> Mylar with an overlay of Kevlar filaments and epoxy.
  
-{{:wiki:ion-chamber-picture.jpg|Picture of the S800 ionization chamber with its alternating cathode and anode plates.}}+{{:wiki:ion-chamber-picture.jpg?550|Picture of the S800 ionization chamber with its alternating cathode and anode plates.}}
  
  
Line 60: Line 60:
  
  
-{{:wiki:ion-chamber-drawing.jpg|Schematic representation of the principle of operation of the ionization chamber.}}+{{:wiki:ion-chamber-drawing.jpg?550|Schematic representation of the principle of operation of the ionization chamber.}}
  
  
Line 67: Line 67:
  
 ===== Hodoscope ===== ===== Hodoscope =====
-A Cs(Na) hodoscope detector located downstream of the [[Detectors#Plastic scintillators|E1 scintillator]] is used to measure the total kinetic energy of implanted nuclei, allowing the identification of different charge states. An additional use recently tested is the measurement of isomer gamma-rays emitted from implanted nuclei.+A Cs(Na) hodoscope detector located downstream of the [[Detectors#Plastic scintillators|E1 scintillator]] is used to measure the total kinetic energy of implanted nuclei, allowing the identification of different charge states. An additional use recently tested is the measurement of isomer gamma-rays emitted from implanted nuclei.  
 + 
 +{{:wiki:hodoscope-drawing.jpg?500|Schematic layout of the S800 Hodoscope.}}
  
 The hodoscope is composed  32 sodium-doped cession iodide CsI(Na) scintillating crystals manufactured by [[http://www.scintitech.com/|ScintiTech]]. Each crystal is 5.1 cm-thick, has an active area of 7.6 cm x 7.6 cm, and is attached to a photomultiplier ([[https://www.hamamatsu.com/jp/en/R1307.html|Hamamatsu R1307]]). The photo-cathodes are made of a bi-alkali material with a transmission peak at 420 nm. The 32 crystals are arranged in eight rows of 4 crystals each so as to cover approximately the same solid angle than the [[Detectors#Cathode Readout Drift Chambers (CRDC)|CRDCs]]. The frontal and lateral sides of each crystal are covered with two 150-µm thick layers of a white Teflon reflective material to provide light shielding between the crystals. The photocathodes are connected to a [[https://groups.nscl.msu.edu/nscl_library/manuals/caen/MOD.N568B.pdf|CAEN N568B]] 16-channel shaper/amplifier, followed by a [[https://groups.nscl.msu.edu/nscl_library/manuals/phillips/7164H.pdf|Phillips 7164H]] 12-bit ADC. The signals from the crystals are gain-matched to a middle position in the ADC spectra by varying the biases of each photocathode.  The hodoscope is composed  32 sodium-doped cession iodide CsI(Na) scintillating crystals manufactured by [[http://www.scintitech.com/|ScintiTech]]. Each crystal is 5.1 cm-thick, has an active area of 7.6 cm x 7.6 cm, and is attached to a photomultiplier ([[https://www.hamamatsu.com/jp/en/R1307.html|Hamamatsu R1307]]). The photo-cathodes are made of a bi-alkali material with a transmission peak at 420 nm. The 32 crystals are arranged in eight rows of 4 crystals each so as to cover approximately the same solid angle than the [[Detectors#Cathode Readout Drift Chambers (CRDC)|CRDCs]]. The frontal and lateral sides of each crystal are covered with two 150-µm thick layers of a white Teflon reflective material to provide light shielding between the crystals. The photocathodes are connected to a [[https://groups.nscl.msu.edu/nscl_library/manuals/caen/MOD.N568B.pdf|CAEN N568B]] 16-channel shaper/amplifier, followed by a [[https://groups.nscl.msu.edu/nscl_library/manuals/phillips/7164H.pdf|Phillips 7164H]] 12-bit ADC. The signals from the crystals are gain-matched to a middle position in the ADC spectra by varying the biases of each photocathode. 
  
 +{{:wiki:hodoscope-drawing.jpg?500 |Schematic layout of the S800 Hodoscope.}}
 +{{ :wiki:hodoscope-picture.jpg?500|Schematic layout of the S800 Hodoscope.}}
  
detectors.txt · Last modified: 2024/03/26 23:03 by swartzj