User Tools

Site Tools


detectors

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
detectors [2013/12/13 19:12]
pereira [Cathode Readout Drift Chambers (CRDC)]
detectors [2013/12/13 19:13]
pereira [Cathode Readout Drift Chambers (CRDC)]
Line 26: Line 26:
 Two Cathode Readout Drift Chamber (CRDC) are used  to measure the transversal positions and angles in  the focal plane. The first detector (CRDC1) is located at the nominal optical focal plane, and it is separated 1 m from the second downstream detector (CRDC2).  Each detector has an active depth of 1.5 cm, an active area of 26 cm (non-dispersive direction) x 56 cm (dispersive direction), and it is filled with a gas mixture consisting of 80% CF<sub>4</sub> and 20% C<sub>4</sub>H<sub>10</sub> at a typical pressure of 50 torr. The operating high power depends on the charge of the measured nuclei. A schematic view of a CRDC can be seen in the figure below. Two Cathode Readout Drift Chamber (CRDC) are used  to measure the transversal positions and angles in  the focal plane. The first detector (CRDC1) is located at the nominal optical focal plane, and it is separated 1 m from the second downstream detector (CRDC2).  Each detector has an active depth of 1.5 cm, an active area of 26 cm (non-dispersive direction) x 56 cm (dispersive direction), and it is filled with a gas mixture consisting of 80% CF<sub>4</sub> and 20% C<sub>4</sub>H<sub>10</sub> at a typical pressure of 50 torr. The operating high power depends on the charge of the measured nuclei. A schematic view of a CRDC can be seen in the figure below.
  
-{{:wiki:crdc-drawing.jpg?600|Schematic view of the two S800 CRDCs.}}+{{:wiki:crdc-drawing.jpg?600 |Schematic view of the two S800 CRDCs.}}
  
  
Line 32: Line 32:
 Each detector consists of two windows mounted on frames, two printed circuit boards (PCB) and an anode frame. Each PCB is made of un-masked G-10, and includes a field shaping foil to ensure a uniform field in the active region of the detector. Two G-10 spacers are laminated to the board on each side. The shaping foils are made of 1.9-mm pitch evaporated aluminum strips perpendicularly oriented to the electric field. The anode frame includes a glued cathode grounding plane, an anode wire running across the field, and a Frisch grid. Cathode pads are located in front of and behind the anode wire. The pads have a pitch of 2.54 mm. The anode frame is sandwiched between the two printed circuit boards with two spacers in between, as shown in the figure below. Each detector consists of two windows mounted on frames, two printed circuit boards (PCB) and an anode frame. Each PCB is made of un-masked G-10, and includes a field shaping foil to ensure a uniform field in the active region of the detector. Two G-10 spacers are laminated to the board on each side. The shaping foils are made of 1.9-mm pitch evaporated aluminum strips perpendicularly oriented to the electric field. The anode frame includes a glued cathode grounding plane, an anode wire running across the field, and a Frisch grid. Cathode pads are located in front of and behind the anode wire. The pads have a pitch of 2.54 mm. The anode frame is sandwiched between the two printed circuit boards with two spacers in between, as shown in the figure below.
  
-{{:wiki:crdc-section.jpg?600|Cross section of a CRDCs.}}+{{:wiki:crdc-section.jpg?600 |Cross section of a CRDCs.}}
  
  
detectors.txt ยท Last modified: 2024/03/26 23:03 by swartzj