User Tools

Site Tools


detectors

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
detectors [2013/12/26 13:09]
pereira [Ionization chamber]
detectors [2013/12/26 13:10]
pereira [Ionization chamber]
Line 55: Line 55:
 The electrons and positive ions liberated by the ionization of the gas along the particle trajectory drift towards the closest  anode-cathode pair. The drifting electrons and ions absorb the energy stored in the detector capacity and produce a voltage change of the anodes across the resistor. The main advantages of the anode-cathode configuration is that the electrons and ions are collected on a very short distance (about 1.5 cm), thus reducing pile-up and position dependence of the signals. Moreover, dividing the detector into 16 sections reduces the detector capacitance and consequently its noise. The operating voltage depends on the charge of the measured nuclei (e.g. __xxx for xxx and xxx for xxx__). Each anode is attached to a small preamplifier inside the ion chamber. This significantly reduces the electronic noise, although it involves the venting of the whole chamber whenever a malfunctioning preamplifier needs to be replaced. The electronic signals from the preamplifier are sent into a [[https://groups.nscl.msu.edu/nscl_library/manuals/caen/MOD.N568B.pdf|CAEN N568B]] 16-channel shaper/amplifier with remotely adjustable gains. The output signals feed a [[https://groups.nscl.msu.edu/nscl_library/manuals/phillips/7164H.pdf|Phillips 7164H]] ADC.  The electrons and positive ions liberated by the ionization of the gas along the particle trajectory drift towards the closest  anode-cathode pair. The drifting electrons and ions absorb the energy stored in the detector capacity and produce a voltage change of the anodes across the resistor. The main advantages of the anode-cathode configuration is that the electrons and ions are collected on a very short distance (about 1.5 cm), thus reducing pile-up and position dependence of the signals. Moreover, dividing the detector into 16 sections reduces the detector capacitance and consequently its noise. The operating voltage depends on the charge of the measured nuclei (e.g. __xxx for xxx and xxx for xxx__). Each anode is attached to a small preamplifier inside the ion chamber. This significantly reduces the electronic noise, although it involves the venting of the whole chamber whenever a malfunctioning preamplifier needs to be replaced. The electronic signals from the preamplifier are sent into a [[https://groups.nscl.msu.edu/nscl_library/manuals/caen/MOD.N568B.pdf|CAEN N568B]] 16-channel shaper/amplifier with remotely adjustable gains. The output signals feed a [[https://groups.nscl.msu.edu/nscl_library/manuals/phillips/7164H.pdf|Phillips 7164H]] ADC. 
 The energy-loss resolution of the ionization chamber can be significantly improved after correcting the position and momentum dependences. Elements up to Z=50 can be separated. The energy-loss resolution of the ionization chamber can be significantly improved after correcting the position and momentum dependences. Elements up to Z=50 can be separated.
- 
- 
- 
- 
 {{:wiki:ion-chamber-picture.jpg?500 |Picture of the S800 ionization chamber with its alternating cathode and anode plates.}} {{:wiki:ion-chamber-picture.jpg?500 |Picture of the S800 ionization chamber with its alternating cathode and anode plates.}}
  
detectors.txt ยท Last modified: 2024/03/26 23:03 by swartzj