User Tools

Site Tools


determination_of_angles_and_momentum

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
determination_of_angles_and_momentum [2013/12/24 09:13]
pereira [Reconstruction method]
determination_of_angles_and_momentum [2013/12/24 09:14]
pereira [Ion-optic coordinates in the S800]
Line 3: Line 3:
  
 ===== Ion-optic coordinates in the S800 ===== ===== Ion-optic coordinates in the S800 =====
-The optical coordinates used in the S800 are described in relation to a central trajectory passing through the center of the S800 magnets, and with the reference momentum given by //p<sub>0</sub>=qBρ<sub>0</sub>//, where //ρ<sub>0</sub>// is the central bend radius for the dipole, //B// is the dipole field and //q// is the ionic charge. These are the longitudinal distance //z// along the reference path, and the transversal distances //x// and //y// (perpendicular to z) with respect to the reference trajectory in the dispersive and non-dispersive directions, respectively. ((Note that since the S800 bending dipoles are oriented vertically, the coordinate //x// corresponds to the vertical direction, while //y// refers to the horizontal direction)) The dispersive and non-dispersive angles //a// and //b// are referred with respect to the //z// axis in the //xz//-plane and //yz//-plane, respectively. The momentum coordinate //δ// is defined according to the equation //δ + 1 = p / p<sub>0</sub>//, where //p// is the momentum of the particle. The energy coordinate //d// is defined as //d= (E-E<sub>0</sub>) / E<sub>0</sub>//, being //E// the energy of the particle and //E<sub>0</sub>// the energy equivalent to //p<sub>0</sub>//.+The optical coordinates used in the S800 are described in relation to a central trajectory passing through the center of the S800 magnets, and with the reference momentum given by //p<sub>0</sub>=qBρ<sub>0</sub>//, where //ρ<sub>0</sub>// is the central bend radius for the dipole, //B// is the dipole field and //q// is the ionic charge. These are the longitudinal distance //z// along the reference path, and the transversal distances //x// and //y// (perpendicular to z) with respect to the reference trajectory in the dispersive and non-dispersive directions, respectively. (Note that since the S800 bending dipoles are oriented vertically, the coordinate //x// corresponds to the vertical direction, while //y// refers to the horizontal direction.) The dispersive and non-dispersive angles //a// and //b// are referred with respect to the //z// axis in the //xz//-plane and //yz//-plane, respectively. The momentum coordinate //δ// is defined according to the equation //δ + 1 = p / p<sub>0</sub>//, where //p// is the momentum of the particle. The energy coordinate //d// is defined as //d= (E-E<sub>0</sub>) / E<sub>0</sub>//, being //E// the energy of the particle and //E<sub>0</sub>// the energy equivalent to //p<sub>0</sub>//.
  
  
determination_of_angles_and_momentum.txt · Last modified: 2022/06/09 15:08 by pereira