User Tools

Site Tools


nmr_probes

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
nmr_probes [2014/03/10 09:37]
pereira [Troubleshooting]
nmr_probes [2014/11/13 12:14]
pereira [Motivation]
Line 5: Line 5:
 Due to the location of the NMR probes in the dipoles of both the S800 analysis line and spectrograph, the NMR signals are usually too small for the NMR module to lock on. This has been a long standing problem which required the users to manually search the resonance, a painful and lengthy process (especially at 3:00 AM!), as well as costly in beam time. The improvement made in 2001 was a remote control panel for the NMR modules that prevented the users from having to enter the vault in order to measure the fields and match the dipoles. Although it greatly shortened the amount of time and energy spent in performing those tasks, it still remained laborious compared to a fully autonomous system like the NMR program running on the A1900 for which the signals are strong enough for the module to lock on.  Due to the location of the NMR probes in the dipoles of both the S800 analysis line and spectrograph, the NMR signals are usually too small for the NMR module to lock on. This has been a long standing problem which required the users to manually search the resonance, a painful and lengthy process (especially at 3:00 AM!), as well as costly in beam time. The improvement made in 2001 was a remote control panel for the NMR modules that prevented the users from having to enter the vault in order to measure the fields and match the dipoles. Although it greatly shortened the amount of time and energy spent in performing those tasks, it still remained laborious compared to a fully autonomous system like the NMR program running on the A1900 for which the signals are strong enough for the module to lock on. 
  
-The solution presented in this bulletin and now implemented on the S800 uses digital oscilloscopes to digitize the NMR signal. The digitized signal is then used in a program that calculates the position of the resonance and deduces the value of the magnetic field. This program (written in Tcl/Tk) is fully autonomous and automatically writes the measured Brho values to the relevant EPICS channels. In addition, it offers the possibility to match the dipoles by pairs and keeps a log file of the measured fields. +The solution implemented on the S800 uses digital oscilloscopes to digitize the NMR signal. The digitized signal is then used in a program that calculates the position of the resonance and deduces the value of the magnetic field. This program (written in Tcl/Tk) is fully autonomous and automatically writes the measured Brho values to the relevant EPICS channels. In addition, it offers the possibility to match the dipoles by pairs and keeps a log file of the measured fields. 
  
  
nmr_probes.txt ยท Last modified: 2024/06/01 16:35 by swartzj