User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/21 10:51]
pereira
tuning_the_s800_xdt [2015/10/21 16:09]
pereira
Line 12: Line 12:
  
 === Send beam to FP === === Send beam to FP ===
 +  * Ensure that the S800 spectrograph magnets are tuned to the right rigidity
 +
 +  * Verify that the beam blocker (labeled I255 Slits) in the S3 page of Barney is open:
 +      * Expected "open" values for top and bottom slits are CT ~6.8 and CB ~3.2, respectively 
  
   * Ensure that CRAD04 (typically connected to object scintillator) is enabled with a rate limit of **20 kHz** (CRAD04 looks at E1 up FP scintillator)   * Ensure that CRAD04 (typically connected to object scintillator) is enabled with a rate limit of **20 kHz** (CRAD04 looks at E1 up FP scintillator)
Line 29: Line 33:
  
   * Remove stops to look for beam at S800 FP with **[[s800 daq tools#scaler display|scalers]]** and adjust beam rate with attenuators   * Remove stops to look for beam at S800 FP with **[[s800 daq tools#scaler display|scalers]]** and adjust beam rate with attenuators
-      * Look at FP scintillator scalers (E1 up, E1 down): +      * Look at FP scintillator scalers (E1 up, E1 down) 
-          * There are typically a few scaler counts without beam +      * There are typically a few scaler counts without beam 
-          * Ion chamber does not have scalers+
  
  
Line 40: Line 44:
  
   * Use **[[electronics overview|scope]]** to look at signal patched out to data U6 (channel #54 in data U6 patch panel)   * Use **[[electronics overview|scope]]** to look at signal patched out to data U6 (channel #54 in data U6 patch panel)
-      * This signal is sent to the CFD in data U6 +      * This signal is sent to the CANBERRA 454 Quad CFD in data U6 
-      * Check raising time and amplitude. Good signal: few ns raising time; 400-500 mV amplitude+      * One of the output from this CFD is sent (via patch panel #62) to the TAC and scaler (channel OBJ.Scint) in S3. The other output goes through a passive delayed, and is sent (via patch panel #67) to the Phillips TDC 
 +      * Check raising time and amplitude. Good signal: ~10 ns raising time; 400-500 mV amplitude
    
-  * Using the scope, check the CFD setting+  * Using the scope, check the CFD setting:
       * Check CFD walk inspect signal in scope by triggering scope with CFD output       * Check CFD walk inspect signal in scope by triggering scope with CFD output
-      * Ensure that CFD delay cable is ok: about 80% of raising time of the input signal   +      * Ensure that CFD delay cable is ok: about 80% of raising time of the input signal 
 +      * Adjust CFD threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.Scint and XFP.Scint) should reflect the transmission of the cocktail beam 
  
 +  * Adjust MCFD threshold:
 +      * Open configuration file **MCFD16.tcl** in **/user/s800/operations/daq/usb/Configs** 
 +      * The OBJ signal feeding this module is not patched out to data U6
 +      * The OBJ signal from MCFD-16 module goes to the Mesytec MTDC32 module and scaler (channel OBJ.MCFD.Scint) 
 +      * Adjust CFD threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam 
 +      * Save new threshold in configuration file **MCFD16.tcl** 
 +   
  
   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V
Line 52: Line 65:
 === FP scintillator setup === === FP scintillator setup ===
  
-  * Set trigger to “s800 trigger” +  * Set trigger to “s800 trigger”  
-      * Ensure that the **[[s800 daq tools#trigger GUI|trigger GUI]]** application is ready. Otherwise, open it by clicking icon **[[s800 daq tools#Run Control Window|RunControl]]** in the desktop of [[Software#u6pc5 (data U6)|u6pc5]] computer +      * Ensure that the **[[s800 daq tools#trigger GUI|trigger GUI]]** application is ready. Otherwise, open it by clicking button **[[s800 daq tools#Run Control Window|Launch ULM GUI]]** in ReadoutGUI  
-      * Under trigger tab select **s800 trigger** (which is E1 up by definition)+          * Under trigger tab select **s800 trigger** (which is E1 up by definition)
           * Deselect experiment trigger           * Deselect experiment trigger
           * SAVE TO FILE           * SAVE TO FILE
-          * Stop and start **[[s800 daq tools#Run Control Window|RunControl]]** to assert new trigger condition+          * End and Begin **[[s800 daq tools#Run Control Window|ReadoutGUI]]** to assert new trigger condition
  
   * Select **[[s800 SpecTcl|Spectcl]]** window **S800_SCINT.win**   * Select **[[s800 SpecTcl|Spectcl]]** window **S800_SCINT.win**
Line 87: Line 100:
 {{:wiki:IC-raws.png?500|IC.raw spectrum.}} {{:wiki:IC-raws.png?500|IC.raw spectrum.}}
  
-        * Gains are controlled in **s800shpini.tcl** file in directory ''s800/operations/daq/usb/Configs'' (an example of the content of this file can be seen {{:wiki:s800shpini.pdf|here}}).+        * Gains are controlled in **s800shpini.tcl** file in directory **s800/operations/daq/usb/Configs** (an example of the content of this file can be seen {{:wiki:s800shpini.pdf|here}}).
             * First shaper is for ion chamber             * First shaper is for ion chamber
             * Typically, only coarse gains are used             * Typically, only coarse gains are used
-            * Stop and start **[[s800 daq tools#Run Control Window|RunControl]]** to assert new gain values+            * End and Begin **[[s800 daq tools#Run Control Window|ReadoutGUI]]** to assert new gain values
  
  
Line 99: Line 112:
           * Patched to data-U6 on labeled connector           * Patched to data-U6 on labeled connector
           * **200 – 500 mV** signals are good           * **200 – 500 mV** signals are good
 +          * CRDC1 anode is noisier (digital noise) than CRDC2 
       * Bias CRDC1 and CRDC2. Typical starting values:       * Bias CRDC1 and CRDC2. Typical starting values:
           * For He-3 @ ~130 MeV/u: CRDC1 (Anode=1120 V, Drift=1000 V); CRDC2 (Anode=1120 V; Drift=1000 V)           * For He-3 @ ~130 MeV/u: CRDC1 (Anode=1120 V, Drift=1000 V); CRDC2 (Anode=1120 V; Drift=1000 V)
Line 110: Line 124:
       * Count rate is a little higher than on scintillator due to noise or thresholds       * Count rate is a little higher than on scintillator due to noise or thresholds
  
-  * Check **[[s800 SpecTcl|Spectcl]]** window **S800_CRDCS.win** to verify the good performance of the detectors. (The spectra for each CRDC can be checked separatelly in windows **s800_CRDC1.win** and **S800_CRDC2.win**)+  * Check **[[s800 SpecTcl|Spectcl]]** window **S800_CRDCS.win** (see figure below) to verify the good performance of the detectors. (The spectra for each CRDC can be checked separatelly in windows **s800_CRDC1.win** and **S800_CRDC2.win**)
  
       * Spectra **crdc1.raws** and **crdc2.raws** (top and middle spectra in the leftmost (first) column)       * Spectra **crdc1.raws** and **crdc2.raws** (top and middle spectra in the leftmost (first) column)
Line 117: Line 131:
           * Width of beam peak is proportional to A1900 p-acceptance in focus optics           * Width of beam peak is proportional to A1900 p-acceptance in focus optics
           * Width is narrower in match optics            * Width is narrower in match optics 
-          * Adjust anode HV to bring fuzzy maximum to around 600-700 channels (the ADC for each pad saturates at 1000 ch)+          * Adjust anode HV to bring fuzzy maximum to around 600-700 channels (saturation of each pad at 1000 ch)
  
       * Spectra **crdc1.anode_crdc1.tac** and **crdc2.anode_crdc2.tac** (top and middle spectra in the second column)       * Spectra **crdc1.anode_crdc1.tac** and **crdc2.anode_crdc2.tac** (top and middle spectra in the second column)
Line 133: Line 147:
      
       * Spectra **crdc1.xg** and **crdc2.xg** (bottom spectra in first and second columns)       * Spectra **crdc1.xg** and **crdc2.xg** (bottom spectra in first and second columns)
-          * It shows the position of the beam in the dispersive direction, evaluated by calculating the "center of gravity" +          * It shows the position of the beam in the dispersive direction, evaluated by calculating the "center of gravity". The peak should be in the middle of the spectra in order to center the beam
  
-      * Spectra **crdc1.tac** and **crdc2.tac** (bottom spectra in third and fourth columns) 
-          * They correspond to the non-dispersive position of the beam in the CRDCs. The peak should be in the middle of the spectra in order to center the beam 
  
 +      * Spectra **crdc1.tac** and **crdc2.tac** (bottom spectra in third and fourth columns)
 +          * They correspond to the non-dispersive position of the beam in the CRDCs. 
  
 {{:wiki:CRDCS-example.png?850|CRDCs summary spectra}} {{:wiki:CRDCS-example.png?850|CRDCs summary spectra}}
tuning_the_s800_xdt.txt · Last modified: 2023/09/22 15:15 by swartzj