User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/21 14:05]
pereira
tuning_the_s800_xdt [2015/10/26 12:41]
pereira [Timing setup]
Line 7: Line 7:
 ====== Focus Mode ====== ====== Focus Mode ======
 For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy. For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy.
 +
 ===== Unreacted beam ===== ===== Unreacted beam =====
 In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from. In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from.
  
  
-=== Send beam to FP ===+==== Send beam to FP ====
   * Ensure that the S800 spectrograph magnets are tuned to the right rigidity   * Ensure that the S800 spectrograph magnets are tuned to the right rigidity
  
Line 39: Line 40:
  
  
-=== Object scintillator setup ===+==== Object scintillator setup ====
  
   * Bias detector. Typical bias: **1200-1800 V** (up to 2200 V)   * Bias detector. Typical bias: **1200-1800 V** (up to 2200 V)
Line 54: Line 55:
  
   * Adjust MCFD threshold:   * Adjust MCFD threshold:
 +      * Open configuration file **MCFD16.tcl** in **/user/s800/operations/daq/usb/Configs** 
       * The OBJ signal feeding this module is not patched out to data U6       * The OBJ signal feeding this module is not patched out to data U6
       * The OBJ signal from MCFD-16 module goes to the Mesytec MTDC32 module and scaler (channel OBJ.MCFD.Scint)        * The OBJ signal from MCFD-16 module goes to the Mesytec MTDC32 module and scaler (channel OBJ.MCFD.Scint) 
-      * Adjust CFD threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam  +      * Make sure that the threshold of the XFP MCFD channel is reasonable. Rates in scaler channels XFP.Scint and XFP.MCFD.Scint should be comparable 
 +      * Adjust MCFD OBJ threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam         
 +      * Save new threshold in configuration file **MCFD16.tcl** 
        
  
   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V
  
-=== FP scintillator setup ===+==== FP scintillator setup ====
  
   * Set trigger to “s800 trigger”    * Set trigger to “s800 trigger” 
Line 83: Line 86:
  
  
-=== Ionization Chamber setup ===+==== Ionization Chamber setup ====
  
   * Gas should be [[Gas handling system#LabView control program|flowing]]   * Gas should be [[Gas handling system#LabView control program|flowing]]
Line 105: Line 108:
  
  
-=== CRDCs setup ===+==== CRDCs setup ====
  
   * **[[hv bias#hv remote control|Bias]]** CRDCs   * **[[hv bias#hv remote control|Bias]]** CRDCs
Line 130: Line 133:
           * Width of beam peak is proportional to A1900 p-acceptance in focus optics           * Width of beam peak is proportional to A1900 p-acceptance in focus optics
           * Width is narrower in match optics            * Width is narrower in match optics 
-          * Adjust anode HV to bring fuzzy maximum to around 600-700 channels (the ADC for each pad saturates at 1000 ch)+          * Adjust anode HV to bring fuzzy maximum to around 600-700 channels (saturation of each pad at 1000 ch)
  
       * Spectra **crdc1.anode_crdc1.tac** and **crdc2.anode_crdc2.tac** (top and middle spectra in the second column)       * Spectra **crdc1.anode_crdc1.tac** and **crdc2.anode_crdc2.tac** (top and middle spectra in the second column)
Line 146: Line 149:
      
       * Spectra **crdc1.xg** and **crdc2.xg** (bottom spectra in first and second columns)       * Spectra **crdc1.xg** and **crdc2.xg** (bottom spectra in first and second columns)
-          * It shows the position of the beam in the dispersive direction, evaluated by calculating the "center of gravity" +          * It shows the position of the beam in the dispersive direction, evaluated by calculating the "center of gravity". The peak should be in the middle of the spectra in order to center the beam 
  
       * Spectra **crdc1.tac** and **crdc2.tac** (bottom spectra in third and fourth columns)       * Spectra **crdc1.tac** and **crdc2.tac** (bottom spectra in third and fourth columns)
-          * They correspond to the non-dispersive position of the beam in the CRDCs. The peak should be in the middle of the spectra in order to center the beam +          * They correspond to the non-dispersive position of the beam in the CRDCs. 
  
 {{:wiki:CRDCS-example.png?850|CRDCs summary spectra}} {{:wiki:CRDCS-example.png?850|CRDCs summary spectra}}
  
  
-=== Timing setup ===+==== Timing setup ===
 +At present, there are three electronic "sources" with time information for ToF calculation: ORTEC TACs, Phillips TDC, and Mesytec MTDC. Some background information can be found [[Timing|here]]. 
 + 
 + 
 +  * Select SpecTcl window **S800_TOF.win**  
 +      * The three columns correspond to the RF-FP ToF (left), OBJ-FP (center), and XFP-FP (right) 
 +      * The first (top) row corresponds to the Phillips TDC 
 +      * The second row corresponds to the MTDC with all the hits included 
 +      * The third row corresponds to the MTDC with only the first hit 
 +      * The fourth row corresponds to the ORTEC TACs. Note that there is not RF-FP TAC 
 +      * The two spectra in the fifth row corresponds to the MTDC summary spectra of OBJ-FP and XFP-FP ToFs (zoomed in). The spectra show the ToF (vertical axis) vs. hit number (horizontal axis). In an unreacted setting, one expects to see the most of the "good" ToF peak recorded in the first hit 
 +      * An empty ToF spectrum means that either the delays are not right (and need to be adjusted) or the spectrum range is too narrow  
 +      * The MTDC spectra should never be empty because the matching window is sufficiently wide (around 4000 ns) 
 + 
 +{{:wiki:SpecTcl-e14019-run103.jpg?850|S800_ToF.win page}} 
 + 
 +  * Adjust delays for 
 +  *  
 +  *  
 +   * Phillips TDC: 
  
   * See [[http://groups.nscl.msu.edu/s800/Technical/Electronics/Electronics_frameset.htm]] for background information on the trigger setup   * See [[http://groups.nscl.msu.edu/s800/Technical/Electronics/Electronics_frameset.htm]] for background information on the trigger setup
Line 177: Line 200:
       * All of the trigger signals are not pipelined and are thus subject to deadtime       * All of the trigger signals are not pipelined and are thus subject to deadtime
  
-=== Checking Particle ID and rate at S800 FP ===+==== Checking Particle ID and rate at S800 FP ====
   * Establish PID   * Establish PID
       * Refer to information on setting from A1900 FP       * Refer to information on setting from A1900 FP
Line 190: Line 213:
  
  
-=== Analysis line classic PPAC setup (Focus optics only) ===+==== Analysis line classic PPAC setup (Focus optics only) ====
   * "Classic" PPACs are the default detector, not TPPACs or CRDCs   * "Classic" PPACs are the default detector, not TPPACs or CRDCs
       * Classic PPACs have rate limitations from pileups       * Classic PPACs have rate limitations from pileups
Line 213: Line 236:
  
  
-=== Setup beamline ===+==== Setup beamline ====
   * Object and XF scintillators and intermediate image PPACs inserted if they will be used   * Object and XF scintillators and intermediate image PPACs inserted if they will be used
       * If Object scintillator will not be used, there is no reason to look at beam on it unless to debug a problem with the transmission       * If Object scintillator will not be used, there is no reason to look at beam on it unless to debug a problem with the transmission
Line 219: Line 242:
   * Set spectrograph Brho for unreacted fragment   * Set spectrograph Brho for unreacted fragment
  
-=== Start scalers ===+==== Start scalers ====
   * Use s800 account   * Use s800 account
  
Line 233: Line 256:
       * scalers (gives error if no bridge)       * scalers (gives error if no bridge)
  
-=== Setting Optimization ===+==== Setting Optimization ====
  
 === Focused optics === === Focused optics ===
tuning_the_s800_xdt.txt · Last modified: 2023/09/22 15:15 by swartzj