User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/21 16:50]
pereira [Unreacted beam]
tuning_the_s800_xdt [2015/10/25 16:29]
pereira
Line 7: Line 7:
 ====== Focus Mode ====== ====== Focus Mode ======
 For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy. For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy.
 +
 ===== Unreacted beam ===== ===== Unreacted beam =====
 In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from. In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from.
  
  
-=== Send beam to FP ===+==== Send beam to FP ====
   * Ensure that the S800 spectrograph magnets are tuned to the right rigidity   * Ensure that the S800 spectrograph magnets are tuned to the right rigidity
  
Line 39: Line 40:
  
  
-=== Object scintillator setup ===+==== Object scintillator setup ====
  
   * Bias detector. Typical bias: **1200-1800 V** (up to 2200 V)   * Bias detector. Typical bias: **1200-1800 V** (up to 2200 V)
Line 64: Line 65:
   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V   * Watch for no rate change on scaler display with a bias adjustment up or down of about 50-100 V
  
-=== FP scintillator setup ===+==== FP scintillator setup ====
  
   * Set trigger to “s800 trigger”    * Set trigger to “s800 trigger” 
Line 85: Line 86:
  
  
-=== Ionization Chamber setup ===+==== Ionization Chamber setup ====
  
   * Gas should be [[Gas handling system#LabView control program|flowing]]   * Gas should be [[Gas handling system#LabView control program|flowing]]
Line 107: Line 108:
  
  
-=== CRDCs setup ===+==== CRDCs setup ====
  
   * **[[hv bias#hv remote control|Bias]]** CRDCs   * **[[hv bias#hv remote control|Bias]]** CRDCs
Line 157: Line 158:
  
  
-=== Timing setup ===+==== Timing setup ====
  
-rview:+Overview:
  
-  * There are three electronic "sources" with time information for ToF calculation: Tennelec TACs, Phillips TDC, and Mesytec MTDC. Although the "start" signal in these three sources is given by E1 up, the electronic path from the detector to the module is different+  * There are three electronic "sources" with time information for ToF calculation: Tennelec TACs, Phillips TDC, and Mesytec MTDC.  
 +  * Although the ToF reference ("start"in all the ToF modules is given by the FP scintillator E1 up, the electronic path from the detector to each module is different (see {{:wiki:s800electronicstschematics-to20150907.pdf|main electronics diagram}} for more details) 
 +  * Before going to the ToF modules, the OBJ and XFP signals are sent to a CANBERRA CFD 454 CFD in data U6 from the data-U6 patch panel (OBJ: patch panel #54, XFP: patch panel #1). (The exception is the OBJ signal into the MTDC)
   * MTDC:   * MTDC:
-      * The OBJ and XFP signals comes from the MCFD module +      * Before getting into the MTDC, the OBJXFP, and E1 up signals in the MTDC go through a Mesytec MCFD        
-      * The OBJ signal into the MCFD comes from the detector via S3 patch panel #94 (going to the target area)  +      * The OBJ signal into the MCFD comes directly from the detector via S3 patch panel #94 (i.e., there is no signal to check in data U6
-      * The XFP signal into the MCFD module comes from data-U6 patch panel #70, which is connected to the CANBERRA 454 CFD XFP output in data U6+      * The XFP signal into the MCFD module comes from data-U6 patch panel #70, connected to the CANBERRA 454 CFD XFP output  
 +      * SpecTcl calculates the OBJ-to-Focal-Plane and XFP-to-Focal-Plane ToFs by substracting the E1 up time (MTDC channel 15) to the OBJ time (MTDC channel 3) and the XFP time (MTDC channel 2) 
       * The MTDC timing signals do not require external delay adjustments because the matching window is sufficiently wide        * The MTDC timing signals do not require external delay adjustments because the matching window is sufficiently wide 
   * Tennelec TACs:   * Tennelec TACs:
-      * The OBJ and XFP signals do not go through the MCFD module +      * The OBJ **stop** signal to the "OBJ-to-Focal-Plane" TAC is sent from the CANBERRA 454 CFD OBJ output via patch panel #62. 
-      The OBJ stop signal comes from data-U6 patch panel #62, which is connected to the CANBERRA 454 CFD OBJ output in data U6. The corresponding CFD input is connected to data-U6 patch panel #54+      * The XFP **stop** signal to the "XFP-to-Focal-Plane" TAC is sent from the CANBERRA 454 CFD OBJ output via patch panel #70.
  
-      * The XFP stop signal comes from data-U6 patch panel #70, which is connected to the CANBERRA 454 CFD OBJ output in data U6. The corresponding CFD input receives the signal via patch panel to data U1+  * Phillips TDC: 
 +      * The OBJ output signal from the CANBERRA 454 CFD is delayed with the low-noise delay boxes in data-U6, and sent to the TDC via patch panel #67 
 +      * The XFP output signal from the CANBERRA 454 CFD is delayed with the low-noise delay boxes in data-U6, and sent to the TDC via patch panel #66 
 +      * SpecTcl calculates the OBJ-to-Focal-Plane and XFP-to-Focal-Plane ToFs by substracting the E1 up time (channel 8) to the OBJ time (channel 14) and the XFP time (channel 15) 
  
 +      * The TDC start is sent from the ULM trigger module. Since the delay of the S800 trigger may be adjusted during XDT, the stop signals (e.g. from OBJ or XFP) will need to be re-adjusted.
  
-      *  +      * Examine the timing of each of the selectable listed signals with respect to the “Live Trigger” signal 
-      * the detector via S3 patch panel #94 (going to the target area)  +          There are 4 TDC inspect channels patched to data-U6 that can be assigned using the trigger GUI 
-      The XFP signal into the MCFD module comes from data-U6 patch panel #70, which is connected to the CANBERRA 454 CFD output in data U6 +          * The full range of the TDC is 400 ns 
-      * The MTDC timing signals do not require external delay adjustments because the matching window is sufficiently wide +          * Set each timing to 200 ns 
 +          * TDCs of last 4 listed signals (including XF and object scintillators) are bypassed with cable delays inside the vault and thus their delays cannot be controlled with the GUI 
 +          * They can be inspected, however using the GUI
  
  
 +      * The TDC delays can only be changed when the run control is stopped; must SAVE settings before starting run control not to overwrite adjustments being made
  
-  * Phillips TDC: +  * Trigger the scope with the “Live Trigger” signal patched to data-U6 
-      * The OBJ and XFP signals do not go through the MCFD module +      * There are 4 trigger inspect channels patched to data-U6 that can be assigned using the trigger GUI 
-      * The OBJ stop signal comes from data-U6 patch panel #67. + 
-      *   +  * Examine the timing of each of the selectable listed signals with respect to the “Live Trigger” signal 
-      * The XFP signal into the MCFD module comes from data-U6 patch panel #70which is connected to the CANBERRA 454 CFD output in data U6+      * There are 4 TDC inspect channels patched to data-U6 that can be assigned using the trigger GUI 
 +      * The full range of the TDC is 400 ns 
 +      * Set each timing to 200 ns 
 +          * TDCs of last 4 listed signals (including XF and object scintillators) are bypassed with cable delays inside the vault and thus their delays cannot be controlled with the GUI 
 +          * They can be inspectedhowever using the GUI
  
-      * The full range of the TACs and Phillips TDC is ~400 ns 
-      *  
  
   * See [[http://groups.nscl.msu.edu/s800/Technical/Electronics/Electronics_frameset.htm]] for background information on the trigger setup   * See [[http://groups.nscl.msu.edu/s800/Technical/Electronics/Electronics_frameset.htm]] for background information on the trigger setup
Line 210: Line 223:
       * All of the trigger signals are not pipelined and are thus subject to deadtime       * All of the trigger signals are not pipelined and are thus subject to deadtime
  
-=== Checking Particle ID and rate at S800 FP ===+==== Checking Particle ID and rate at S800 FP ====
   * Establish PID   * Establish PID
       * Refer to information on setting from A1900 FP       * Refer to information on setting from A1900 FP
Line 223: Line 236:
  
  
-=== Analysis line classic PPAC setup (Focus optics only) ===+==== Analysis line classic PPAC setup (Focus optics only) ====
   * "Classic" PPACs are the default detector, not TPPACs or CRDCs   * "Classic" PPACs are the default detector, not TPPACs or CRDCs
       * Classic PPACs have rate limitations from pileups       * Classic PPACs have rate limitations from pileups
Line 246: Line 259:
  
  
-=== Setup beamline ===+==== Setup beamline ====
   * Object and XF scintillators and intermediate image PPACs inserted if they will be used   * Object and XF scintillators and intermediate image PPACs inserted if they will be used
       * If Object scintillator will not be used, there is no reason to look at beam on it unless to debug a problem with the transmission       * If Object scintillator will not be used, there is no reason to look at beam on it unless to debug a problem with the transmission
Line 252: Line 265:
   * Set spectrograph Brho for unreacted fragment   * Set spectrograph Brho for unreacted fragment
  
-=== Start scalers ===+==== Start scalers ====
   * Use s800 account   * Use s800 account
  
Line 266: Line 279:
       * scalers (gives error if no bridge)       * scalers (gives error if no bridge)
  
-=== Setting Optimization ===+==== Setting Optimization ====
  
 === Focused optics === === Focused optics ===
tuning_the_s800_xdt.txt · Last modified: 2023/09/22 15:15 by swartzj