User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/22 17:04]
pereira
tuning_the_s800_xdt [2015/10/25 16:27]
pereira
Line 7: Line 7:
 ====== Focus Mode ====== ====== Focus Mode ======
 For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy. For most of the experiments in the S800, the analysis line is run in focus mode. In this optics, the analysis line is achromatic, i.e. the dispersive position of the beam focused in the target area (pivot point) does not depend on the momentum. Thus, this mode provides the biggest momentum acceptance (4%). On the other hand, since the spectrograph focal plane is chromatic, the resolution is limited to about 1 part in 1000 in energy.
 +
 ===== Unreacted beam ===== ===== Unreacted beam =====
 In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from. In the first part of the XDT, the rigidity of the S800 is typically set to match the value of the fragment beam (selected in the A1900) after passing through the S800 target. This is where the term "unreacted beam" comes from.
tuning_the_s800_xdt.txt ยท Last modified: 2023/09/22 15:15 by swartzj