User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/26 14:11]
pereira [Analysis line classic PPAC setup (Focus optics only)]
tuning_the_s800_xdt [2015/10/27 07:29]
pereira [Object scintillator setup]
Line 55: Line 55:
  
   * Adjust MCFD threshold:   * Adjust MCFD threshold:
-      * Open configuration file **MCFD16.tcl** in **/user/s800/operations/daq/usb/Configs** +      * Using the [[s800 daq tools#Mesytec CFD gui|Mesytec CFD GUI]], open the configuration file **MCFD16.tcl**  in directory **/user/operations/daq/usb/Configs**
       * The OBJ signal feeding this module is not patched out to data U6       * The OBJ signal feeding this module is not patched out to data U6
-      * The OBJ signal from MCFD-16 module goes to the Mesytec MTDC32 module and scaler (channel OBJ.MCFD.Scint) +      * The OBJ signal from MCFD module goes to the Mesytec MTDC module and scaler (channel OBJ.MCFD.Scint) 
       * Make sure that the threshold of the XFP MCFD channel is reasonable. Rates in scaler channels XFP.Scint and XFP.MCFD.Scint should be comparable       * Make sure that the threshold of the XFP MCFD channel is reasonable. Rates in scaler channels XFP.Scint and XFP.MCFD.Scint should be comparable
       * Adjust MCFD OBJ threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam               * Adjust MCFD OBJ threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam        
Line 238: Line 238:
  
 ==== Setting Optimization ==== ==== Setting Optimization ====
- 
-=== Focused optics === 
  
   * Expectations for A1900 FP to S800 FP transmission   * Expectations for A1900 FP to S800 FP transmission
Line 249: Line 247:
       * Want to balance losses between S800 analysis line and Transfer Hall (the S800 analysis line is typically slightly worse)       * Want to balance losses between S800 analysis line and Transfer Hall (the S800 analysis line is typically slightly worse)
       * Best diagnostic is scalers from S800 FP, object scintillator and XF scintillator       * Best diagnostic is scalers from S800 FP, object scintillator and XF scintillator
-      * Tweak y-quads (while watching scalers) in front of dipole gaps (this works both for Transfer Hall and analysis line); choose elements that have biggest effect with smallest ratio change+      * Using the knob box and the NCS application **QtKM** (file **BLSetup_A1900.gkm**), tweak y-quads (while watching scalers) in front of dipole gaps (this works both for Transfer Hall and analysis line); choose elements that have biggest effect with smallest ratio change
  
   * Document optimized transmission with another run to disk to measure rate of fragment of interest at S800 FP   * Document optimized transmission with another run to disk to measure rate of fragment of interest at S800 FP
Line 260: Line 258:
  
  
-====== Dispersion Matching tuning ======+====== Dispersion Matching Mode ======
  
 In the dispersion-matching optics, the S800 focal point is achromatic, i.e. the position of the beam in the dispersive direction does not depend on the momentum. As a consequence, the beam is momentum-dispersed on the target area (pivot point) with a dispersion of about 10 cm/%. The main goal of the tuning is to ensure that the position and angle dispersion are cancelled at the focal plane, thus maximizing the resolution at that point. We also want a good image in the object position, which will also contribute to increase the resolution at the focal plane.  In the dispersion-matching optics, the S800 focal point is achromatic, i.e. the position of the beam in the dispersive direction does not depend on the momentum. As a consequence, the beam is momentum-dispersed on the target area (pivot point) with a dispersion of about 10 cm/%. The main goal of the tuning is to ensure that the position and angle dispersion are cancelled at the focal plane, thus maximizing the resolution at that point. We also want a good image in the object position, which will also contribute to increase the resolution at the focal plane. 
Line 335: Line 333:
           * Probably smaller typical S800 delay needed for HiRA           * Probably smaller typical S800 delay needed for HiRA
       * An example of experiments where auxiliary detectors are not used and, thus, setting up coincidence timing is not an issue are the experiments with tritons run by the charge exchange group       * An example of experiments where auxiliary detectors are not used and, thus, setting up coincidence timing is not an issue are the experiments with tritons run by the charge exchange group
-      * It is not clear whether coincidence setup gets logged as “XDT” or “EXR” +     
   * Choice of setting to be used for coincidence timing setup   * Choice of setting to be used for coincidence timing setup
       * The reaction of interest for the experiment can be used to setup coincidences only if the rate of coincidences is high enough       * The reaction of interest for the experiment can be used to setup coincidences only if the rate of coincidences is high enough
tuning_the_s800_xdt.txt · Last modified: 2023/09/22 15:15 by swartzj