User Tools

Site Tools


tuning_the_s800_xdt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
tuning_the_s800_xdt [2015/10/26 14:18]
pereira [Setting Optimization]
tuning_the_s800_xdt [2015/10/30 10:25]
pereira [Setting up Reaction Settings]
Line 18: Line 18:
       * Expected "open" values for top and bottom slits are CT ~6.8 and CB ~3.2, respectively        * Expected "open" values for top and bottom slits are CT ~6.8 and CB ~3.2, respectively 
  
-  * Ensure that CRAD04 (typically connected to object scintillator) is enabled with a rate limit of **20 kHz** (CRAD04 looks at E1 up FP scintillator)+  * Ensure that CRAD04 is enabled with a rate limit of **20 kHz** (CRAD04 looks at E1 up FP scintillator)
  
   * Remember: S800 FP rate limit is **6 kHz**   * Remember: S800 FP rate limit is **6 kHz**
Line 55: Line 55:
  
   * Adjust MCFD threshold:   * Adjust MCFD threshold:
-      * Open configuration file **MCFD16.tcl** in **/user/s800/operations/daq/usb/Configs** +      * Using the [[s800 daq tools#Mesytec CFD gui|Mesytec CFD GUI]], open the configuration file **MCFD16.tcl**  in directory **/user/operations/daq/usb/Configs**
       * The OBJ signal feeding this module is not patched out to data U6       * The OBJ signal feeding this module is not patched out to data U6
-      * The OBJ signal from MCFD-16 module goes to the Mesytec MTDC32 module and scaler (channel OBJ.MCFD.Scint) +      * The OBJ signal from MCFD module goes to the Mesytec MTDC module and scaler (channel OBJ.MCFD.Scint) 
       * Make sure that the threshold of the XFP MCFD channel is reasonable. Rates in scaler channels XFP.Scint and XFP.MCFD.Scint should be comparable       * Make sure that the threshold of the XFP MCFD channel is reasonable. Rates in scaler channels XFP.Scint and XFP.MCFD.Scint should be comparable
       * Adjust MCFD OBJ threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam               * Adjust MCFD OBJ threshold looking at scalers. The ratio of OBJ to XFP scaler rates (channels OBJ.MCFD.Scint and XFP.MCFD.Scint) should reflect the transmission of the cocktail beam        
Line 74: Line 74:
           * End and Begin **[[s800 daq tools#Run Control Window|ReadoutGUI]]** to assert new trigger condition           * End and Begin **[[s800 daq tools#Run Control Window|ReadoutGUI]]** to assert new trigger condition
  
-  * Select **[[s800 SpecTcl|Spectcl]]** window **S800_SCINT.win**+  * Select **[[s800 SpecTcl|Spectcl]]** window **S800_SCINT.win** in directory **/user/s800/operations/spectcl/s800v7/Windows**
  
   * Adjust **[[hv bias|bias]]** looking at 2D spectra **e1.deup_e1.dedown** (showing the parameters s800.fp.e1.de_down vs. s800.fp.e1.de_up) for the FP E1 scintillator   * Adjust **[[hv bias|bias]]** looking at 2D spectra **e1.deup_e1.dedown** (showing the parameters s800.fp.e1.de_down vs. s800.fp.e1.de_up) for the FP E1 scintillator
Line 94: Line 94:
  
  
-  * Select **[[s800 SpecTcl|Spectcl]]** window **S800_IC.win**+  * Select **[[s800 SpecTcl|Spectcl]]** window **S800_IC.win** 
  
   * Adjust pad gains   * Adjust pad gains
Line 155: Line 155:
           * They correspond to the non-dispersive position of the beam in the CRDCs.            * They correspond to the non-dispersive position of the beam in the CRDCs. 
  
-{{:wiki:CRDCS-example.png?850|CRDCs summary spectra}}+{{:wiki:CRDCS-example.png?850|S800_CRDCS.win SpecTcl window}}
  
  
Line 165: Line 165:
       * The three columns correspond to the **RF-FP** ToF (left), **OBJ-FP** (center), and **XFP-FP** (right)       * The three columns correspond to the **RF-FP** ToF (left), **OBJ-FP** (center), and **XFP-FP** (right)
       * The first (top) row corresponds to the Phillips TDC       * The first (top) row corresponds to the Phillips TDC
-      * The second row corresponds to the MTDC with all the hits included+      * The second row corresponds to the MTDC with all the hits included. Note that in a unreacted-beam setting, the first hit typically provides the "good" ToF (i.e. start and stop signals come from the same event) 
       * The third row corresponds to the MTDC with only the first hit       * The third row corresponds to the MTDC with only the first hit
       * The fourth row corresponds to the ORTEC TACs. Note that there is not **RF-FP TAC**       * The fourth row corresponds to the ORTEC TACs. Note that there is not **RF-FP TAC**
-      * The two spectra in the fifth row corresponds to the MTDC summary spectra of OBJ-FP and XFP-FP ToFs (zoomed in). The spectra show the ToF (vertical axis) vs. hit number (horizontal axis). In an unreacted setting, one expects to see the most of the "good" ToF peak recorded in the first hit+      * The two spectra in the fifth row corresponds to the MTDC summary spectra of OBJ-FP and XFP-FP ToFs (zoomed in). The spectra show the ToF (vertical axis) vs. hit number (horizontal axis). Note that in a unreacted-beam setting, the first hit typically provides the "good" ToF (i.e. start and stop signals come from the same event). This is not the case in a reaction setting, where the rates in the XFP and OBJ detectors are much higher than in the FP SCI 
       * An empty ToF spectrum means that either the delays are not right (and need to be adjusted) or the spectrum range is too narrow        * An empty ToF spectrum means that either the delays are not right (and need to be adjusted) or the spectrum range is too narrow 
       * The MTDC spectra should never be empty because the matching window is sufficiently wide (around 4000 ns)       * The MTDC spectra should never be empty because the matching window is sufficiently wide (around 4000 ns)
  
 {{:wiki:SpecTcl-e14019-run103.jpg?850|S800_ToF.win page}} {{:wiki:SpecTcl-e14019-run103.jpg?850|S800_ToF.win page}}
 +
 +  * Due to the multi-hit capability of the MTDC, we need to select the "good" MTDC ToF peak so that SpecTcl can search for the right hit (more details can be found [[Timing#MTDC|here]]):
 +      * Use the spectra **TOF.MTDC_RF**, **TOF.MTDC_OBJ**, and **TOF.MTDC_XFP** (second row in figure above) 
 +      * Using the cursor mouse, check the lower and higher limits defining the region in the MTDC ToF spectra with the "good" ToF peak. Do it for the three ToFs: RF-FP, OBJ-FP, and XFP-FP
 +      * Go to the **Variables** page in SpecTcl GUI and assign the limits to the following variables: 
 +              * **s800.fp.vmetdc.mtdc_objlow** and **s800.fp.vmetdc.mtdc_rfhigh** for RF-XFP
 +              * **s800.fp.vmetdc.mtdc_objlow** and **s800.fp.vmetdc.mtdc_rfhigh** for OBJ-XFP
 +              * **s800.fp.vmetdc.mtdc_xfplow** and **s800.fp.vmetdc.mtdc_xfphigh** for XFP-XFP
 +      * For each ToF, SpecTcl will search the hit number that fits in the selected region. The new MTDC ToF parameters are **s800.fp.vmetdc.mtdc_rf**, **s800.fp.vmetdc.mtdc_obj**, and **s800.fp.vmetdc.mtdc_xfp** 
  
   * If necessary, adjust delays:   * If necessary, adjust delays:
Line 180: Line 189:
       * Adjust the TDC delays of E1 up, down using the Delay GUI       * Adjust the TDC delays of E1 up, down using the Delay GUI
       * In principle, the TACs delays don't need to be adjusted       * In principle, the TACs delays don't need to be adjusted
 +
 +
 +  * Check the efficiencies of the Phillips TDC, TACs, and MTDC for the OBJ-FP and XFP-FP ToFs:
 +      * Make a gate on spectrum **IC.SUM** selecting the region of interest, and call it "IC"
 +      * Looking at the ToF spectra gated on "IC" compare the recorded events in the spectra with the number of events in the gate
 +      * The window file **S800_TOF_EFFICIENCY.win** includes all the spectra needed
  
  
 ==== Checking Particle ID and rate at S800 FP ==== ==== Checking Particle ID and rate at S800 FP ====
  
-  * Select SpecTcl window **S800_PID.win** in directory **/user/s800/operations/spectcl/Windows** +  * Select SpecTcl window **S800_PID.win** 
       * The three columns correspond to the PID determined with the **RF-FP** ToF (left), **OBJ-FP** (center), and **XFP-FP** (right)       * The three columns correspond to the PID determined with the **RF-FP** ToF (left), **OBJ-FP** (center), and **XFP-FP** (right)
-      * The first (top) row corresponds to the Phillips TDC +      * The first (top) row corresponds to PID spectra using the Phillips TDC 
-      * The second row corresponds to the MTDC with just the first hit included +      * The second row corresponds to PID spectra using the MTDC with __just the first hit included__ 
-      * The third row corresponds to the ORTEC TACs. Note that there is not **RF-FP TAC**+      * The third row corresponds to PID spectra using the MTDC including the correct hit corresponding to the good ToF peak (see previous section) 
 +      * The fourth row corresponds to PID spectra using the MTDC gated on the "good" ToF peak   
 +      * The fifth row corresponds to PID spectra using the ORTEC TACs. Note that there is not **RF-FP TAC**
       * You might need to adjust the limits of the spectra to get a good resolution       * You might need to adjust the limits of the spectra to get a good resolution
  
Line 195: Line 212:
  
   * Establish PID and measure rate   * Establish PID and measure rate
-      * Determine the blob that corresponds to the unreacted beam (refer to information on setting from A1900 FP)+      * Choose your favorite PID spectrum and determine the blob that corresponds to the unreacted beam (refer to information on setting from A1900 FP). Note: the PID using the first MTDC hit might be missing good events
       * Take gates around the fragment of interest       * Take gates around the fragment of interest
       * Measure the beam intensity the appropriate faraday cup       * Measure the beam intensity the appropriate faraday cup
Line 258: Line 275:
  
  
-====== Dispersion Matching tuning ======+====== Dispersion Matching Mode ======
  
 In the dispersion-matching optics, the S800 focal point is achromatic, i.e. the position of the beam in the dispersive direction does not depend on the momentum. As a consequence, the beam is momentum-dispersed on the target area (pivot point) with a dispersion of about 10 cm/%. The main goal of the tuning is to ensure that the position and angle dispersion are cancelled at the focal plane, thus maximizing the resolution at that point. We also want a good image in the object position, which will also contribute to increase the resolution at the focal plane.  In the dispersion-matching optics, the S800 focal point is achromatic, i.e. the position of the beam in the dispersive direction does not depend on the momentum. As a consequence, the beam is momentum-dispersed on the target area (pivot point) with a dispersion of about 10 cm/%. The main goal of the tuning is to ensure that the position and angle dispersion are cancelled at the focal plane, thus maximizing the resolution at that point. We also want a good image in the object position, which will also contribute to increase the resolution at the focal plane. 
Line 286: Line 303:
        {{:wiki:XG-ALLGATES.png?650|XG.}}        {{:wiki:XG-ALLGATES.png?650|XG.}}
         * The leftmost peak corresponds to reactions with H. The central peak are reaction with C. The goal of the tweak is to make these peaks as narrow as possible         * The leftmost peak corresponds to reactions with H. The central peak are reaction with C. The goal of the tweak is to make these peaks as narrow as possible
-  * Open the NCS application **QtKM** in the Applications Menu. Open file **BLSetup_A1900.gkm**. The magnetic elements that are typically tweaked with the knob box seating on the left side of u6pc5 are **I232TA**, **I236TC**, and **I245TC** which can be found on page **S800 BLine+Spectrograph**. Other elements used to improve the focusing in the object point, and the transmission are **I172QA** and **I174QB**. The goal of the dispersion-matching tuning is to find a compromise between transmission and resolution.+  * Open the NCS application **QtKM** in the Applications Menu. Open file **BLSetup_A1900.gkm**. The magnetic elements that are typically tweaked with the knob box sitting on the left side of u6pc5 are **I232TA**, **I236TC**, and **I245TC** which can be found on page **S800 BLine+Spectrograph**. Other elements used to improve the focusing in the object point, and the transmission are **I172QA** and **I174QB**. The goal of the dispersion-matching tuning is to find a compromise between transmission and resolution.
        {{:wiki:QtKM.png?650|XG.}}        {{:wiki:QtKM.png?650|XG.}}
          * The two figures below show the spectrum **CRDC1.XG!FOI-AFP-BFP** before (top) and after (bottom) the dispersion-matching tuning for a typical experiment. Be aware that the width given by SpecTcl for the selected peak is not too reliable. It is more convenient to do a real gaussian fit. Unfortunatelly this is not an option included in the current version of SpecTcl. That's why some device physicists prefer SpecTk for this type of tuning          * The two figures below show the spectrum **CRDC1.XG!FOI-AFP-BFP** before (top) and after (bottom) the dispersion-matching tuning for a typical experiment. Be aware that the width given by SpecTcl for the selected peak is not too reliable. It is more convenient to do a real gaussian fit. Unfortunatelly this is not an option included in the current version of SpecTcl. That's why some device physicists prefer SpecTk for this type of tuning
Line 310: Line 327:
   * Reaction setting to FP    * Reaction setting to FP 
       * Start with Attenuator setting of unreacted beam and step up in intensity       * Start with Attenuator setting of unreacted beam and step up in intensity
-      * Set up beam blocker, if necessary+      * If necessary, set up beam blocker looking at **CRDC1.RAWS** and/or **CRDC2.RAWS** SpecTcl spectra (see **S800_CRDCS.win** SpecTcl window shown above)  
 +          * Click on label **I255 Slits** in the S3 page of Barney 
 +          * Expected "open" values for top and bottom slits are CT ~6.8 and CB ~3.2respectively 
           * Expect to see unreacted beam if reaction setting is within +/- 3% of unreacted beam setting           * Expect to see unreacted beam if reaction setting is within +/- 3% of unreacted beam setting
           * Should have to move only one of the two blockers unless charge states are present           * Should have to move only one of the two blockers unless charge states are present
-          * A graphic tool is available to help (not yet calibrated) 
           * Try to cut only as much as necessary; depends on           * Try to cut only as much as necessary; depends on
               * What rate limits allow               * What rate limits allow
               * What experimenters want (e.g., if they want singles, the cut has to be more restrictive to limit acquisition deadtime)               * What experimenters want (e.g., if they want singles, the cut has to be more restrictive to limit acquisition deadtime)
           * Move blocker, decrease attenuator, repeat           * Move blocker, decrease attenuator, repeat
 +
 +      * If necessary, do the ToF corrections to improve the PID resolution (instructions [[During experiments#Particle identification corrections|here]])
  
  
Line 333: Line 353:
           * Probably smaller typical S800 delay needed for HiRA           * Probably smaller typical S800 delay needed for HiRA
       * An example of experiments where auxiliary detectors are not used and, thus, setting up coincidence timing is not an issue are the experiments with tritons run by the charge exchange group       * An example of experiments where auxiliary detectors are not used and, thus, setting up coincidence timing is not an issue are the experiments with tritons run by the charge exchange group
-      * It is not clear whether coincidence setup gets logged as “XDT” or “EXR” +     
   * Choice of setting to be used for coincidence timing setup   * Choice of setting to be used for coincidence timing setup
       * The reaction of interest for the experiment can be used to setup coincidences only if the rate of coincidences is high enough       * The reaction of interest for the experiment can be used to setup coincidences only if the rate of coincidences is high enough
Line 367: Line 386:
  
  
- 
- 
-====== Follow-up ====== 
- 
-  * Before leaving beam with experimenters 
-      * Set up current trip points on Linux HV controls 
-          * Values used for K-48 
-              * 5 for CRDC and Ion Chamber anodes and intermediate image ppacs 
-              * 50 for CRDC drifts 
-              * 80 for IC drift 
-          * Ensure alarms are running 
-              * Make sure Linux HV GUI alarms are enabled 
-              * Make sure threshold on isobutane level is set up (not currently connected to alarms because they give too many false alarms when communication is lost) 
-          * All logs are being recorded 
-              * There is no log file for biases controlled by Labview 
-              * Linux HV 
-              * LabView gas handling system 
-              * Note in logbook 
-                  * Scintillator biases 
-                  * IC gate biases 
-          * Post reference printouts for experimenters 
-              * HV status: a snapshot of HV GUI 
-              * Gas handling system status: a snapshot of LabView window 
- 
-  * Create window configuration with summing regions to make it easier for experimenters to track efficiency/performance of all detectors 
- 
-  * Setting up coincidences for additional reaction settings in an experiment 
-      * Do not need to redo coincidence settup if secondary beam does not change 
-      * Might need to redo coincidence setup if secondary beam changes drastically 
- 
-  * To watch during experiment 
-      * Look for isobutene running out – messes up data over several hours 
- 
-  * Implementing dE- or TOF-based corrections is part of EXR  
- 
-More detail needed 
- Minimum rates required for coincidence setup 
- Selection of appropriate substitute reactions for coincidence setup 
- How to feel comfortable that there will not be a problem with FP detector gases running out 
- Starting alarms 
- Starting logging 
  
  
  
tuning_the_s800_xdt.txt · Last modified: 2023/09/22 15:15 by swartzj