User Tools

Site Tools


stations

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
stations [2013/10/18 10:36]
pereira
stations [2013/12/24 08:43] (current)
pereira [Focal Plane Station]
Line 1: Line 1:
-====== S800 Stations ======+====== S800 Detector ​Stations ======
  
 The S800 includes several detector stations: [[Stations#​Object Station|object]],​ [[Stations#​Intermediate Plane Station|intermediate plane]], [[Stations#​Target Station|target]],​ and [[Stations#​Focal Plane Station|focal plane]]. ​ The S800 includes several detector stations: [[Stations#​Object Station|object]],​ [[Stations#​Intermediate Plane Station|intermediate plane]], [[Stations#​Target Station|target]],​ and [[Stations#​Focal Plane Station|focal plane]]. ​
Line 8: Line 8:
  
 ===== Object Station ===== ===== Object Station =====
-The object station contains a [[Detectors#​Plastic Scintillators|plastic scintillator]] for time-of-flight measurements. This detector is usually left in the beam during experiments and can withstand rates up to 1 MHz. A large surface (5 cm × 5 cm) PIN 0.3 mm silicon detector is also installed in the this box and serves to measure the energy loss of the beam particles. This detector is intended to check the composition of the incoming radioactive beam and is not meant to stay in the beam during data accumulation. The rate is limited to 1 kHz.  +The object station contains a [[Detectors#​Plastic Scintillators|plastic scintillator]] for time-of-flight measurements. This detector is usually left in the beam during experiments and can withstand rates up to 1 MHz. A large surface (5 cm × 5 cm) PIN 0.3 mm silicon detector is also installed in the this box and serves to measure the energy loss of the beam particles. This detector is intended to check the composition of the incoming radioactive beam and is not meant to stay in the beam during data accumulation. The rate is limited to 1 kHz. A remotely retractable "​viewer"​ sheet is installed in the chamber to be used during tuning of the A1900 to the [[Stations#​Target Station|pivot point]] of the S800. A picture of the object-station box, located on the western side of the middle level of the [[S3 vault]], is shown below. 
 + 
 +{{:​wiki:​object_station_box.jpg?​500|Object-station box.}} 
 + 
 + 
 + 
 + 
  
 ===== Intermediate Plane Station ===== ===== Intermediate Plane Station =====
-The intermediate ​plane station is equipped with two [[Detectors#​Tracking Parallel Plate Avalanche Counters (TPPAC)|Tracking Parallel Plate Avalanche Counters TPPACs]].+The intermediate-image station box is located ​ close to the stairs accessing the western side of the middle-level of the [[S3 vault]] (see picture below). The station is equipped with two [[Detectors#​Tracking Parallel Plate Avalanche Counters (TPPAC)|Tracking Parallel Plate Avalanche Counters TPPACs]] ​and a remotely retractable "​viewer"​ sheet to be used during tuning of the A1900 to the [[Stations#​Target Station|pivot point]] of the S800.   
 + 
 +{{:​wiki:​intermediateimage_station_box.jpg?​500|Intermediate-image station box.}} 
 + 
  
  
 ===== Target Station ===== ===== Target Station =====
-The standard configuration of the S800 used to employ a scattering chamber that contains a ladder for holding the targets. This ladder is mounted on a drive that allowed for continuous rotation as well as vertical translation for the fine adjustment of the target position and thickness. This scattering chamber also contains two fixed-position drives movable by 1" increments located in front of the target, as well as a table that can be inserted from the chamber top covering the whole area of the chamber. The inside dimensions of this chamber are 1 m along the beam axis by 1 m transversally. It can be configured for a fixed set of spectrograph angles using a set of welded front flanges for 0°, 5°, 8°, 10°, and 18°. +The target station is located in the pivot point of the S800, right in front of the [[Magnets#​Spectrograph Quadrupole Doublet|quadrupole doublet]] of the spectrograph (see picture below). ​The standard configuration of the S800 used to employ a scattering chamber that contains a ladder for holding the targets. This ladder is mounted on a drive that allowed for continuous rotation as well as vertical translation for the fine adjustment of the target position and thickness. This scattering chamber also contains two fixed-position drives movable by 1" increments located in front of the target, as well as a table that can be inserted from the chamber top covering the whole area of the chamber. The inside dimensions of this chamber are 1 m along the beam axis by 1 m transversally. It can be configured for a fixed set of spectrograph angles using a set of welded front flanges for 0°, 5°, 8°, 10°, and 18°. 
  
 A much larger scattering chamber is available to accommodate for bigger detector systems such as [[http://​www.nscl.msu.edu/​tech/​devices/​hira/​|HiRA]]. This chamber retains a target mechanism similar to the one described above (vertical translation + rotation), but with the additional possibility of shifting the target position along the beam axis. This feature is necessary for experiments that require more space "​downstream"​ of the target to detect particles at forward angles. Note, that moving the target "​upstream"​ of the nominal position reduces the solid angle of the spectrograph and requires a retune of the last two quadrupole triplets of the analysis line.  A much larger scattering chamber is available to accommodate for bigger detector systems such as [[http://​www.nscl.msu.edu/​tech/​devices/​hira/​|HiRA]]. This chamber retains a target mechanism similar to the one described above (vertical translation + rotation), but with the additional possibility of shifting the target position along the beam axis. This feature is necessary for experiments that require more space "​downstream"​ of the target to detect particles at forward angles. Note, that moving the target "​upstream"​ of the nominal position reduces the solid angle of the spectrograph and requires a retune of the last two quadrupole triplets of the analysis line. 
Line 21: Line 32:
 As mentioned before, the scattering chamber is equipped with drives that can accommodate any kind of tracking detector (with a small adaption). Standard PPAC detectors (limited to 1 kHz count rate) can be installed at those locations. However, one should keep in mind that reaction products stemming from interaction of the beam with the detectors pose a possible contamination of the beam and require "​background runs" to be subtracted out when running an experiment with a thin target. Therefore, these detectors should only be inserted to check the tracking deduced from the intermediate image and it should be avoided to leave these detectors in the beam during data accumulation. As mentioned before, the scattering chamber is equipped with drives that can accommodate any kind of tracking detector (with a small adaption). Standard PPAC detectors (limited to 1 kHz count rate) can be installed at those locations. However, one should keep in mind that reaction products stemming from interaction of the beam with the detectors pose a possible contamination of the beam and require "​background runs" to be subtracted out when running an experiment with a thin target. Therefore, these detectors should only be inserted to check the tracking deduced from the intermediate image and it should be avoided to leave these detectors in the beam during data accumulation.
  
-Some detection systems do not require a scattering chamber. In this case, the chamber will be removed and the target is slid into a pipe surrounded by the detector array. SeGA, CAESAR, GRETINA, ​PLUNGER, LENDA have standard frames and setups to be used with the S800. Other detector arrays would require the design and fabrication of new hardware. In this configuration a target change presently requires venting the target section and dismounting part of the hardware to access the inside of the beam pipe. This operation typically takes about 30-45 minutes. ​+Some detection systems do not require a scattering chamber. In this case, the chamber will be removed and the target is slid into a pipe surrounded by the detector array. ​Some devices like [[http://​www.nscl.msu.edu/​exp/​devices#​sega|SeGA]][[http://​www.nscl.msu.edu/​exp/​devices#​gretina|CAESAR]][[http://​www.nscl.msu.edu/​exp/​devices#​gretina|GRETINA]][[http://​www.nscl.msu.edu/​exp/​devices#​triplex|TRIPLEX]]and [[http://​www.nscl.msu.edu/​exp/​devices#​lenda|LENDA]] have standard frames and setups to be used with the S800. Other detector arrays would require the design and fabrication of new hardware. In this configuration a target change presently requires venting the target section and dismounting part of the hardware to access the inside of the beam pipe. This operation typically takes about 30-45 minutes. ​ 
 + 
 +{{:​wiki:​target_station_box.jpg?​500|Pivot point of the S800 right in front of the quadrupole doublet (in yellow) of the spectrograph.}} 
  
  
 ===== Focal Plane Station ===== ===== Focal Plane Station =====
-The S800 focal plane station is equipped with various detectors including two position sensitive [[Detectors#​Cathode Readout Drift Chambers (CRDC)|Cathode Readout Drift Chambers (CRDCs)]] for tracking the trajectories of the particles, a [[Detectors#​Ionization Chamber|ionization chamber]] for the measurement of energy loss, a [[Detectors#​Plastic Scintillators|timing scintillator E1]], and an [[Detectors#​Hodoscope|Hodoscope]] for total kinetic energy ​measurements.+The S800 focal plane station ​chamber is located on the top level of the [[S3 vault]], following the second dipole of the spectrograph (see picture below). The chamber ​is equipped with various detectors including two position sensitive [[Detectors#​Cathode Readout Drift Chambers (CRDC)|Cathode Readout Drift Chambers (CRDCs)]] for tracking the trajectories of the particles, a [[Detectors#​Ionization Chamber|ionization chamber]] for the measurement of energy loss, a [[Detectors#​Plastic Scintillators|timing scintillator E1]] for trigger and timing measurements, and an [[Detectors#​Hodoscope|Hodoscope]] for total kinetic energy ​determination.
  
 +{{:​wiki:​focalplane_station_box.jpg?​500|Focal plane station box.}}
  
stations.1382106988.txt.gz · Last modified: 2013/10/18 10:36 by pereira