Estimation of Magnetic Rigidities for Experiments Involving the S800 Spectrograph

Jorge Pereira-Conca

(January 2023)

1. Introduction

The S800 Spectrograph has two parts: The analysis line (running from the Object position to the Target Station) and the spectrograph itself (See Fig. 1). The maximum magnetic rigidity ($B\rho$) of these two sections is defined by the maximum fields and bending radius of the dipole magnets, and by the maximum currents (fields) of that the different quadrupoles can withstand. In the case of the spectrograph, the typical maximum value is 4 Tm. As for the analysis line, the limit depends slightly on the optics mode used (focus or dispersion matched). Typical maximum values for these two modes are **~5 Tm** (dispersion matched), and **~4.2 Tm** (focus mode).

2. Evaluation of Magnetic Rigidities in S800 Experiments

During the preparation of a FRIB proposal, it is important to estimate the rigidities of the nuclear beams involved in order to make sure that they do not exceed the maximum rigidities of the S800. These rigidities depend on the mass-over-charge ratio and velocity of the nucleus:

$$B\rho (in Tm) = \frac{A}{Q} \cdot \beta \gamma \cdot \frac{uc}{e} = 3.1071 \cdot \frac{A}{Q} \cdot \beta \gamma$$

where e is the electron charge, u is the amu in MeV/u, c is the speed of light, and

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$

The following guideline describes how to evaluate the magnetic rigidity of a nuclear beam using the Physical Calculator of LISE++:

Step 1

The information required is the energy of the beam provided by ARIS (ARIS beam) and the energy of the reaction product after the S800 target (S800 recoil), as well as their mass and proton numbers (A and Z), and their charge state Q.

Step 2

Open LISE++ and click on the Physical Calculator icon shown in the figure below (see red arrow)

The Physical Calculator window will pop out (see Figure below).

Physical Calculator							_	
				- Mass —		- After / Into material		
A Element Z q Table of Nuclides			;	lon mass		Material Si (504		4 μm)
42 S	16 16 🦛	Z	⇒	41.97	23	Energy Remain 🔵	95.76833	MeV/u
β ⁻ dec	ay 🦾	N	⇒	amu	1	Energy Loss	177.6129	MeV
		,				Energy Straggling (σ)	0.0405	MeV/u
Energy 💿 1	00 MeV/u	Energy	99.	93405	AMeV	Angular Straggling (σ)	1.4925	mrad (plane)
						Lateral Spread (σ)	0.5044	microns
Brho 3.87	76867 T m	TKE	4197	7.22995	MeV	Brho (for q=Z)	3.789861	Τm
Erho 🔵 499.9	90261 MJ/C	Velocity	12.	87694	cm/ns	Equilibrium values after "Si" material		
						Charge State <q> 15.999</q>		
P (1859	6.088 MeV/c	Beta (0.42	295286		dq (σ)	0.029	
p_trnspt 🔵 1.162	22555 GeV/c	Gamma	1.10	73544		Thickness (mg/cm ²) 1.185	
- Range and Energy Loss in								
						Material	Si	
Block	Z	Remain MeV/u	Remain MeV	E-Loss MeV	<q></q>	Range	dRange (o)
M FP_PIN	Si (504 micron)	95.768	4019.617	177.613	16	1618.60647	3.0272	mg/cm ²
FP_SCI	C9H10 (100 mm)	0	0	4019.617		6973.14521	13.0416	μm
						Energy Remaining	0	MeV/u
						Material thickness	1618.6065	5 mg/cm ²
						for energy rest	6973.1452	2 µm
							Energy stree	
	0					Chargo Statos		
✓ Quit	Y Help					Charge States 3	Angular strag	

Step 3

Use the left top region of the window (indicated in the figure below by a red box) and enter the A and Z numbers, and charge state Q (In the example, the nuclear beam is 42 S fully stripped (Q=Z=16)).

Physical Calculator					_		
		– Mass –		After / Into material —			
A Element Z g	Table of Nuclides	lon mas	s	Material Si (504 µ		μm)	
42 S 16 16 🦛	Z 🔿	41.972	23	Energy Remain O	95.76833	MeV/u	
β ⁻ decay 🦛		amu		Energy Loss	177.6129	MeV	
		J		Energy Straggling (σ)	0.0405	MeV/u	
Energy 100 MeV/u	Energy O	99.93405	AMeV	Angular Straggling (σ)	1.4925	mrad (plane)	
				Lateral Spread (σ)	0.5044	microns	
Brho 3.876867 T m		4197.22995	MeV	Brho (for q=Z)	3.789861	Tm	
Erho 499.90261 MJ/C	Velocity 🔘	12.87694	cm/ns	Equilibrium values after "Si" material			
	[0.4005000		Charge State <q></q>	15.999		
P 18596.088 MeV/c	Beta 🔾	0.4295286		dq (σ)	0.029		
p_trnspt 0 1.1622555 GeV/c	Gamma 🔘	1.1073544		Thickness (mg/cm ²) 1.185		
				Material	Si		
Block Z Thickness	Remain Rem MeV/u Me	nain E-Loss eV MeV	<q></q>	Range	dRange (σ)	
M FP_PIN Si (504 micron)	95.768 4019	.617 177.613	16	0 1618.60647	3.0272	mg/cm ²	
M FP_SCI C9H10 (100 mm)	0 0	4019.617		6973.14521	13.0416	μm	
				Energy Remaining	0	MeV/u	
				Material thickness	1618.6065	mg/cm ²	
				for energy rest	6973.1452	μm	
				 Calculation method of - 			
				Energy Losses 4	Energy strag	gling 1	
✓ Quit ? Help				Charge States 3	Angular strag	gling 1	

Step 4

Use the left middle region of the window (indicated in the figure below by a red box) and select **Energy** by clicking on the checking circle on the (see red arrow). Enter the energy value in MeV/u (in this example 100 MeV/u).

The Physics Calculator will automatically calculate the Magnetic Rigidity "Brho" (see blue arrow) (in this example 3.8769 Tm)

Physical Calculator							_			
				Mass —		After / Into material —				
A Element	A Element Z q Table of Nuclides Ion mass			Material	Si (504 µm)					
42 S	16 16 🦛	Z	⇒	41.97	23	Energy Remain 🔵	95.76833	MeV/u		
β ⁻ dec	ay 🧔	N	⇒	amu		Energy Loss	177.6129	MeV		
		,				Energy Straggling (σ)	0.0405	MeV/u		
Energy	00 MeV/u	Energy	99.	93405	AMeV	Angular Straggling (σ)	1.4925	mrad (plane)		
						Lateral Spread (σ)	0.5044	microns		
Brho 3.87	16867 T m	TKE	4197	.22995	MeV	Brho (for q=Z)	3.789861	Τm		
Erho (499.9	Erho 499.90261 MJ/C Velocity 12.87694 cm/ns				Equilibrium values after "Si" material					
					Charge State <q> 15.999</q>					
F () 1039		Dela	0.42	.90200		dq (σ)	0.029			
p_trnspt 🔵 1.162	22555 GeV/c	Gamma 🤇) [1.10	73544		Thickness (mg/cm	2) 1.185			
After 🔵	After O						Range and Energy Loss in			
						Material	Si			
Block	Z Thickness	Remain MeV/u	Remain MeV	E-Loss MeV	<q></q>	Range	dRange (o)		
M FP_PIN	Si (504 micron)	95.768	4019.617	177.613	16	0 1618.60647	3.0272	mg/cm ²		
FP_SCI	C9H10 (100 mm)	0	0	4019.617		6973.14521	13.0416	μm		
						Energy Remaining	0	MeV/u		
						Material thickness	1618.6065	5 mg/cm ²		
						for energy rest	6973.1452	2 µm		
						Calculation method of				
						Energy Losses 4	Energy strag	gling 1		
✓ Quit	? Help					Charge States 3	Angular strag	ggling 1		

Step 5

Repeat this sequence to calculate all the rigidities of ARIS beams, and select the maximum and minimum values. For contingency purposes, apply a factor +/- 2% to the maximum and minimum rigidities. This range will define the maximum and minimum rigidities needed in the analysis line.

Do the same for all the S800 recoils.