User Tools

Site Tools


numexercises7_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
Next revision Both sides next revision
numexercises7_14 [2014/07/14 08:00]
bogner created
numexercises7_14 [2014/07/14 13:18]
bogner
Line 1: Line 1:
 ===== Numerical Exercises for Monday July 14 ===== ===== Numerical Exercises for Monday July 14 =====
  
-  - In your favorite programming languagemake program ​to construct ​a $NxN$ matrix+  
 +  * In the code {{:​coulomboscrelme.f90.zip|}}you will find subroutine (laguerre_general) that calculates the generalized Laguerre polynomials that appear in the definition of the HO wf's, see {{:​ho_spherical.pdf| here}}. Use this subroutine ​to create ​function or subroutine that calculates the HO wf'​s ​$R_{nl}(r)$. Note that for large $n,l$ values, the factorial and double factorial functions that appear in $R_{nl}$ lead to overflow if you code them according to their naive expressions. How might you avoid this problem? [Hint: Recall that $Log{(AB\cdots)}=Log{A} + Log{B} + \cdots$].  
 +  
 + * Check numerically that the constructed HO wf's are orthonormal. I.e., evaluate $\int r^2dr R_{nl}(r)R_{n'​l'​}(r)$. You will want to use Gaussian quadrature to discretize the integrals. Gaussian quadrature is discussed some in {{:​ho_spherical.pdf| }}. While Gauss-Laguerre quadrature is ideal for this problem, plain Gauss-Legendre quadrature, which is widely available in canned routines you can easily find via Google, is sufficient.  
 + 
 + * Next, write a function/​subroutine that calculates the matrix ​elements of the Coulomb potential, $\langle nl|V|n'​l\rangle$. Use atomic units ($e=m_e=1$) where $V(r)=1/​r$. 
 +  
 + 
 +\begin{equation} 
 +\langle nl|V|n'​l\rangle = \int_0^{\infty}r^2dr R_{nl}(r}\frac{1}{r}R_{n'​l}(r)  
 +\end{equation} 
 + 
 + 
 +  * Construct the hamilton matrix $\langle nl|H|n'​l\rangle$ keeping all HO basis states $n,​n'<​N_{max}$. Diagonalize the matrix for increasing $N_{max}$ values for different values of the oscillator length parameter $b$ ("​oscl"​ in the code.) $b$ and $\hbar\omega$ are related by $b = \sqrt{(\hbar/​(m\omega)}$. ​ Plot your lowest eigenvalue for each $N_{max}$ as a function of $b$ (or $\hbar\omega$).  
 + 
 +  * Construct a subroutine that returns relative HO matrix elements of the Minnesota NN potential. The definition of the Minnesota potential and a sketch of how to proceed will be given on the black board.  
 + 
 +Here are  
 + 
numexercises7_14.txt · Last modified: 2014/07/14 13:40 by bogner