User Tools

Site Tools


numexercises7_14

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
numexercises7_14 [2014/07/14 12:06]
bogner
numexercises7_14 [2014/07/14 13:40] (current)
bogner
Line 1: Line 1:
 ===== Numerical Exercises for Monday July 14 ===== ===== Numerical Exercises for Monday July 14 =====
  
-  * Install Git, and try out some of the commands covered in Morten or Nicolas'​s lecture slides ({{:​computing.pdf|}} {{:​talentdftguides.pdf|}}) for your codes in the following problems. 
- 
-  * In your favorite programming language, make a program to construct a real symmetric $NxN$ matrix. Diagonalize it using the appropriate LAPACK or GSL routine, and write out some number of the lowest eigenvalues. (Suggestion:​ You might find it useful to use Mathematica (available on the ECT* computers) to diagonalize a small matrix that you can benchmark against.) This will help you test that you've linked to the GSL or LAPACK library. 
    
-  * The code {{:laguerre_general.f90.zip|}} calculates the generalized Laguerre polynomials that appear in the definition of the HO wf's, see {{:​ho_spherical.pdf| here}}. Use this subroutine to create a function or subroutine that calculates the HO wf's $R_{nl}(r)$. ​+  * In the code {{:coulomboscrelme.f90.zip|}}, you will find a subroutine (laguerre_general) that calculates the generalized Laguerre polynomials that appear in the definition of the HO wf's, see {{:​ho_spherical.pdf| here}}. Use this subroutine to create a function or subroutine that calculates the HO wf's $R_{nl}(r)$. Note that for large $n,l$ values, the factorial and double factorial functions that appear in $R_{nl}$ lead to overflow if you code them according to their naive expressions. How might you avoid this problem? [Hint: Recall that $Log{(AB\cdots)}=Log{A} + Log{B} + \cdots$]
    
-  ​* Check numerically that the constructed HO wf's are orthonormal. I.e., evaluate $\int r^2dr R_{nl}(r)R_{n'​l'​}(r)$. ​To do this, you will want to use Gaussian quadrature to discretize the integrals. Gaussian quadrature is discussed ​a bit in {{:​ho_spherical.pdf| }}. If you don't have routine to calculate quadrature points/weights, take advantage ​of Google to find canned routine to do this for you.+   * Check numerically that the constructed HO wf's are orthonormal. I.e., evaluate $\int r^2dr R_{nl}(r)R_{n'​l'​}(r)$. ​You will want to use Gaussian quadrature to discretize the integrals. Gaussian quadrature is discussed ​some in {{:​ho_spherical.pdf| }}. While Gauss-Laguerre quadrature is ideal for this problem, plain Gauss-Legendre quadrature, which is widely available in canned routines ​you can easily find via Google, is sufficient.  
 + 
 +  * Write function/subroutine that calculates the matrix elements ​of the Coulomb potential between an electron and proton, $\langle nl|V|n'​l\rangle$. Use atomic units ($e=m_e=\hbar=1/​4\pi\epsilon_0$)
  
-  * Construct ​the hamilton matrix ​$\langle nl|H|n'​l\rangle$ ​keeping all HO basis states $n,​n'<​N_{max}$. Diagonalize the matrix ​for increasing $N_{max}$ values for different values of the oscillator length parameter $b$ ("​oscl"​ in the code.) $b$ and $\hbar\omega$ are related by $b = \sqrt{(\hbar/​(m\omega)}$. ​ Plot your lowest eigenvalue for each $N_{max}$ as a function of $b$ (or $\hbar\omega$)+  * Modify your code in the previous step so that it calculates ​$\langle nl|V|n'​l\rangle$ for any user-supplied potential ​$V(r)$. 
  
-  * Construct a subroutine that returns relative HO matrix elements ​of the Minnesota NN potential. The definition of the Minnesota potential ​and a sketch of how to proceed will be given on the black board+  * Using the analytical expressions for the kinetic energy ​matrix elements ​$\langle nl|T|n'​l\rangle$,​construct ​the hamilton matrix $\langle nl|H|n'​l\rangle$ for the hydrogen atom for $l=0$. Keep HO basis states $n,​n'<​N_{max}$ ​and diagonalize $H$. For a given $N_{max}$ value, repeat ​the calculation at different HO frequencies and plot the ground state energy versus $\omega$ (or the oscillator length scale, defined as $b=\sqrt{\hbar/​(m\omega)}$. Hopefully, you find that as $N_{max}$ increases, the ground state begins to approach the exact result of -$.5$ in natural units.
  
-Here are  
  
  
numexercises7_14.1405353967.txt.gz · Last modified: 2014/07/14 12:06 by bogner