Symmetry Breaking and Correlations in Nuclei

II - Configuration Mixing

Configuration mixing

The most important correlation effects in nuclear structure originate from large amplitude collective motion. Low-lying excited states are admixed into the mean-field ground state. These admixtures can be removed by configuration mixing: superposition of mean-field states.
Correlations include nuclear surface vibrations (low-lying excitations) and zero-energy modes (translation, rotation, ...) related to restoration of symmetries which are broken by the mean-field ground state.

The Generator Coordinate Method

\rightarrow starting from a set of mean-field states $\mid \Phi(q)>$ that depend on the collective coordinate q, approximate eigenstates of the Hamiltonian H are obtained by GCM configuration mixing:

The weight functions $f_{k}(q)$ are found by requiring that the expectation value:
$E_{k}=\frac{\left\langle\Psi_{k}\right| \hat{H}\left|\Psi_{k}\right\rangle}{\left\langle\Psi_{k} \mid \Psi_{k}\right\rangle}$ is stationary with respect to an arbitrary variation $\delta \mathrm{fk}$.

Hill-Wheeler equation:

$$
\int d q^{\prime}\left[\mathcal{H}\left(q, q^{\prime}\right)-E_{k} \mathcal{I}\left(q, q^{\prime}\right)\right] f_{k}\left(q^{\prime}\right)=0
$$

$$
\mathcal{H}\left(q, q^{\prime}\right)=\langle\Phi(q)| \hat{H}\left|\Phi\left(q^{\prime}\right)\right\rangle \quad \mathcal{I}\left(q, q^{\prime}\right)=\left\langle\Phi(q) \mid \Phi\left(q^{\prime}\right)\right\rangle
$$

overlap kernel

\rightarrow for any operator O:

$$
\mathcal{O}\left(q, q^{\prime}\right)=\langle\Phi(q)| \hat{O}\left|\Phi\left(q^{\prime}\right)\right\rangle
$$

The weight functions are not orthonormal and they cannot be interpreted as collective wave functions for the variable q. This role is assigned to the functions:

$$
g_{k}(q)=\int d q^{\prime} \mathcal{I}^{1 / 2}\left(q, q^{\prime}\right) f_{k}\left(q^{\prime}\right)
$$

The matrix element of any operator between two GCM states can be expressed in terms of the g_{k} 's as:

$$
\left\langle\Psi_{k}\right| \hat{O}\left|\Psi_{l}\right\rangle=\iint d q d q^{\prime} g_{k}^{*}(q) \tilde{\mathcal{O}}\left(q, q^{\prime}\right) g_{l}\left(q^{\prime}\right)
$$

with: $\tilde{\mathcal{O}}\left(q, q^{\prime}\right)=\iint d q^{\prime \prime} d q^{\prime \prime \prime} \mathcal{I}^{1 / 2}\left(q, q^{\prime \prime}\right) \mathcal{O}\left(q^{\prime \prime}, q^{\prime \prime \prime}\right) \mathcal{I}^{1 / 2}\left(q^{\prime \prime \prime}, q^{\prime}\right)$
The GCM energies E_{k} and functions g_{k} are the eigenvalues and eigenvectors of the hermitian integral operator

$$
\int d q^{\prime} \tilde{\mathcal{H}}\left(q, q^{\prime}\right) g_{k}\left(q^{\prime}\right)=E_{k} g_{k}(q)
$$

Gaussian Overlap Approximation: the overlap kernel is replaced by a Gaussian function of the form:

$$
\mathcal{I}\left(q, q^{\prime}\right) \simeq \mathcal{I}_{G}\left(q, q^{\prime}\right)=\exp \left\{-\frac{1}{2}\left[\frac{\left(q-q^{\prime}\right)}{a(\bar{q})}\right]^{2}\right\}
$$

based on the rapid decrease of the matrix elements between wave functions corresponding to different values of the collective variable.

Choice of the collective coordinate

1. RESTORATION OF BROKEN SYMMETRIES: the family of wave functions $\mid \Phi(q)>$ is generated by the symmetry operations: rotation in coordinate space for angular momentum, rotation in gauge space for particle number. The functions $f_{k}(q)$ are a priori determined by the properties of the symmetry operator (this is strictly valid only for Abelian symmetry groups $-\mathrm{U}(1)$ particle number. For non-Abelian groups the weight functions are not completely determined by the symmetry).
2. SHAPE DEGREES OF FREEDOM: the collective space is generated by constrained mean-field calculations. The generating function is unknown and has to be determined by the diagonalization of the Hill-Wheeler equation.

The starting point is usually a constrained HFB calculation of the potential energy surface with the mass quadrupole components as constrained quantities.

Configuration mixing of mean-field wave functions projected on angular momentum and particle number:

$$
\left|\Psi_{\alpha}^{J M}>=\sum_{j, K} f_{\alpha}^{J K}\left(q_{j}\right) \hat{P}_{M K}^{J} \hat{P}^{Z} \hat{P}^{N}\right| \phi\left(q_{j}\right)>
$$

The weight functions are determined by requiring that the expectation value of the energy is stationary with respect to an arbitrary variation:

$$
\delta E^{J}=\delta \frac{<\Psi_{\alpha}^{J M}|\hat{H}|_{\alpha}^{J M}>}{<\Psi_{\alpha}^{J M} \mid \Psi_{\alpha}^{J M}>}=0
$$

The Hill-Wheeler equation:

$$
\sum_{j, K} f_{\alpha}^{J K}\left(q_{j}\right)\left(\left\langle\phi\left(q_{i}\right)\right| \hat{H} \hat{P}_{M K}^{J} \hat{P}^{N} \hat{P}^{Z}\left|\phi\left(q_{j}\right)\right\rangle-E_{\alpha}^{J}\left\langle\phi\left(q_{i}\right)\right| \hat{P}_{M K}^{J} \hat{P}^{N} \hat{P}^{Z}\left|\phi\left(q_{j}\right)\right\rangle\right)=0
$$

presents a generalized eigenvalue problem. The weight functions are not orthogonal and cannot be interpreted as collective wave functions for the variable q.

$$
\sum_{j} \mathcal{H}^{J}\left(q_{i}, q_{j}\right) f_{\alpha}^{J}\left(q_{j}\right)=E_{\alpha}^{J} \sum_{j} \mathcal{N}^{J}\left(q_{i}, q_{j}\right) f_{\alpha}^{J}\left(q_{j}\right)
$$

... define a new set of functions: $\quad g_{\alpha}^{J}\left(q_{i}\right)=\sum_{j}\left(\mathcal{N}^{J}\right)^{1 / 2}\left(q_{i}, q_{j}\right) f_{\alpha}^{J}\left(q_{j}\right)$
With this transformation the Hill-Wheeler equation defines an ordinary eigenvalue problem:

$$
\sum_{j} \tilde{\mathcal{H}}^{J}\left(q_{i}, q_{j}\right) g_{\alpha}^{J}\left(q_{j}\right)=E_{\alpha} g_{\alpha}^{J}\left(q_{i}\right)
$$

with: $\quad \tilde{\mathcal{H}}^{J}\left(q_{i}, q_{j}\right)=\sum_{k, l}\left(\mathcal{N}^{J}\right)^{-1 / 2}\left(q_{i}, q_{k}\right) \mathcal{H}^{J}\left(q_{k}, q_{l}\right)\left(\mathcal{N}^{J}\right)^{-1 / 2}\left(q_{l}, q_{j}\right)$

The functions $g_{\alpha}\left(q_{i}\right)$ are orthonormal and play the role of collective wave functions.

Example: Self-consistent meanfield calculation which includes correlations related to restoration of broken symmetries (rotational, particle number) and to fluctuations of collective variables (quadrupole deformation).

1. Mean-field potential energy curve calculated with a constraint on the quadrupole moment.
2. Angular-momentum and particle -number projected energy curves.
3. The Hamiltonian is diagonalized within each of the collective subspaces of the nonorthogonal bases $\mid J, q>$ by using the Generator Coordinate Method.

Angular momentum projection and configuration mixing: ${ }^{154} \mathrm{Sm}$

Men-field energy curve of ${ }^{154} \mathrm{Sm}$ (dashed), and the corresponding angular-momentum projected ($\mathrm{J}=0+; 2+; 4+$, and $6+$) energy curves, as functions of the axial deformation β.

Angular-momentum projected GCM results for the excitation energies and $B(E 2)$ values (in Weisskopf units) of the lowest two bands in ${ }^{154} \mathrm{Sm}$, in comparison to data.
\rightarrow larger variational space for projected GCM calculations!

Collective Hamiltonian in five dimensions

S.G. Rohozinski, Phys. Scr. (2013)
\rightarrow quadrupole tensor: $\quad \boldsymbol{\alpha}=\boldsymbol{\alpha}(d, \omega)$
Deformations: $\quad d=\left(d_{0}, d_{2}\right) \quad$ Euler angles: $\quad \omega=\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$

The volume element in the space of quadrupole coordinates:

$$
\mathrm{d} \Omega(\boldsymbol{\alpha})=\Pi_{k} \mathrm{~d} a_{k}=\mathrm{d} \Omega(d) \mathrm{d} \Omega(\omega)
$$

The GCM trial state:

$$
|\Psi[\varphi]\rangle=\int \varphi(\boldsymbol{\alpha})|\Phi(\boldsymbol{\alpha})\rangle \mathrm{d} \Omega(\boldsymbol{\alpha})
$$

$\int\left[\mathcal{H}\left(\boldsymbol{\alpha}, \boldsymbol{\alpha}^{\prime}\right)-E \mathcal{I}\left(\boldsymbol{\alpha}, \boldsymbol{\alpha}^{\prime}\right)\right] \varphi\left(\boldsymbol{\alpha}^{\prime}\right) \mathrm{d} \Omega\left(\boldsymbol{\alpha}^{\prime}\right)=0$.

The Gaussian overlap approximation
 $$
\boldsymbol{\beta}=\frac{1}{2}\left(\boldsymbol{\alpha}+\boldsymbol{\alpha}^{\prime}\right) \quad \gamma_{\mu}=\alpha_{\mu}-\alpha_{\mu}^{\prime}
$$

\rightarrow approximate the overlap kernel by a Gaussian function:

$$
\mathcal{I}\left(\boldsymbol{\beta}+\frac{1}{2} \boldsymbol{\gamma}, \boldsymbol{\beta}-\frac{1}{2} \boldsymbol{\gamma}\right) \approx \exp \left(-\frac{1}{2} g^{\mu \nu}(\boldsymbol{\beta}) \gamma_{\mu} \gamma_{\nu}\right)
$$

\rightarrow notation: $\quad \alpha^{\mu}=\alpha_{\mu}^{*}=(-1)^{\mu} \alpha_{-\mu} \quad \boldsymbol{\alpha} \cdot \boldsymbol{\beta}=\sum_{\mu}(-1)^{\mu} \alpha_{\mu} \beta_{-\mu}$
\Rightarrow real, symmetric and positive definite matrix: $\quad g^{\mu \nu}(\boldsymbol{\beta})=-\frac{\partial^{2} \mathcal{I}(\boldsymbol{\beta}, \boldsymbol{\beta})}{\partial \gamma_{\mu} \partial \gamma_{v}}$
\rightarrow approximation for the energy kernel:

$$
\begin{aligned}
& \mathcal{H}\left(\boldsymbol{\beta}+\frac{1}{2} \boldsymbol{\gamma}, \boldsymbol{\beta}-\frac{1}{2} \boldsymbol{\gamma}\right) \\
& \quad=\exp \left(-\frac{1}{2} g^{\mu \nu}(\boldsymbol{\beta}) \gamma_{\mu} \gamma_{v}\right)\left[v(\boldsymbol{\beta})-\frac{1}{2} h^{\mu \nu}(\boldsymbol{\beta}) \gamma_{\mu} \gamma_{\nu}\right]
\end{aligned}
$$

$$
\begin{gathered}
v(\boldsymbol{\beta})=\mathcal{H}(\boldsymbol{\beta}, \boldsymbol{\beta}) \\
h^{\mu \nu}(\boldsymbol{\beta})=-\frac{\partial^{2} \mathcal{H}(\boldsymbol{\beta}, \boldsymbol{\beta})}{\partial \gamma_{\mu} \partial \gamma_{v}}-g^{\mu \nu}(\boldsymbol{\beta}) v(\boldsymbol{\beta})
\end{gathered}
$$

The square root kernel is defined:

$$
\begin{aligned}
& \mathcal{R}(\boldsymbol{\alpha}, \boldsymbol{\xi}) \\
& \quad=\left(\frac{2}{\pi}\right)^{5 / 4} \exp \left(-g^{\mu \nu}\left(\frac{1}{2}(\boldsymbol{\xi}+\boldsymbol{\alpha})\right)\left(\xi_{\mu}-\alpha_{\mu}\right)\left(\xi_{v}-\alpha_{\nu}\right)\right)
\end{aligned}
$$

\Rightarrow the integral Hill-Wheeler equation in the GOA reduces to an orthogonal eigenvalue equation for the collective wave function:

$$
\psi(\boldsymbol{\alpha})=\int \mathcal{R}\left(\boldsymbol{\alpha}, \boldsymbol{\alpha}^{\prime}\right) \varphi\left(\boldsymbol{\alpha}^{\prime}\right) \mathrm{d} \Omega\left(\boldsymbol{\alpha}^{\prime}\right)
$$

\Rightarrow the Bohr differential eigenvalue equation: $\quad H(\boldsymbol{\xi}) \psi(\boldsymbol{\xi})=E \psi(\boldsymbol{\xi})$

$$
H=-\frac{1}{2 \sqrt{g(\xi)}} \frac{\partial}{\partial \xi_{\mu}} \sqrt{g(\xi)} A_{\mu v}(\xi) \frac{\partial}{\partial \xi_{v}}+V(\xi)
$$

... nuclear excitations determined by quadrupole vibrational and rotational degrees of freedom:

$$
\begin{gathered}
\hat{H}=\hat{T}_{\text {vib }}+\hat{T}_{\text {rot }}+V_{\text {coll }} \\
\hat{T}_{\text {vib }}=-\frac{\hbar^{2}}{2 \sqrt{w r}}\left\{\frac{1}{\beta^{4}}\left[\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{4} B_{\gamma \gamma} \frac{\partial}{\partial \beta}-\frac{\partial}{\partial \beta} \sqrt{\frac{r}{w}} \beta^{3} B_{\beta \gamma} \frac{\partial}{\partial \gamma}\right]\right. \\
\left.+\frac{1}{\beta \sin 3 \gamma}\left[-\frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \gamma} \frac{\partial}{\partial \beta}+\frac{1}{\beta} \frac{\partial}{\partial \gamma} \sqrt{\frac{r}{w}} \sin 3 \gamma B_{\beta \beta} \frac{\partial}{\partial \gamma}\right]\right\} \\
\hat{T}_{\text {rot }}=\frac{1}{2} \sum_{k=1}^{3} \frac{\hat{J}_{k}^{2}}{\mathcal{I}_{k}} \\
V_{\text {coll }}\left(q_{0}, q_{2}\right)=E_{\text {tot }}\left(q_{0}, q_{2}\right)-\Delta V_{\text {vib }}\left(q_{0}, q_{2}\right)-\Delta V_{\text {rot }}\left(q_{0}, q_{2}\right)
\end{gathered}
$$

The entire dynamics of the collective Hamiltonian is governed by the seven functions of the intrinsic deformations β and γ : the collective potential, the three mass parameters: $B_{\beta \beta}, B_{\beta \gamma}$, $B_{\gamma \gamma^{\prime}}$ and the three moments of inertia I_{k}.
...collective wave functions: $\quad \Psi_{\alpha}^{I M}(\beta, \gamma, \Omega)=\sum_{K \in \Delta I} \psi_{\alpha K}^{I}(\beta, \gamma) \Phi_{M K}^{I}(\Omega)$

$$
\Phi_{M K}^{I}(\Omega)=\sqrt{\frac{2 I+1}{16 \pi^{2}\left(1+\delta_{K 0}\right)}}\left[D_{M K}^{I *}(\Omega)+(-1)^{I} D_{M-K}^{I *}(\Omega)\right]
$$

In the simplest approximation the moments of inertia are calculated from the InglisBelyaev formula:

$$
\left.\mathcal{I}_{k}=\sum_{i, j} \frac{\left(u_{i} v_{j}-v_{i} u_{j}\right)^{2}}{E_{i}+E_{j}}\left|\langle i| \hat{J}_{k}\right| j\right\rangle\left.\right|^{2} \quad k=1,2,3
$$

The mass parameters are calculated in the cranking approximation:

$$
\begin{gathered}
B_{\mu \nu}\left(q_{0}, q_{2}\right)=\frac{\hbar^{2}}{2}\left[\mathcal{M}_{(1)}^{-1} \mathcal{M}_{(3)} \mathcal{M}_{(1)}^{-1}\right]_{\mu \nu} \\
\mathcal{M}_{(n), \mu \nu}\left(q_{0}, q_{2}\right)=\sum_{i, j} \frac{\langle i| \hat{Q}_{2 \mu}|j\rangle\langle j| \hat{Q}_{2 \nu}|i\rangle}{\left(E_{i}+E_{j}\right)^{n}}\left(u_{i} v_{j}+v_{i} u_{j}\right)^{2}
\end{gathered}
$$

Evolution of triaxial shapes in Pt nuclei:

Coexisting shapes in the $\mathrm{N}=28$ isotones

Neutron $\mathrm{N}=28$ spherical shell gaps

Exp. values		$\Delta_{N=28}^{\text {sph. }}$	$\beta_{\text {min }}$
4.80 MeV	${ }^{48} \mathrm{Ca}$	4.73	0.00
4.47 MeV	${ }^{46} \mathrm{Ar}$	4.48	-0.19

${ }^{46} \mathrm{Ar}$: single-particle levels

${ }^{44}$ S: single-particle levels

${ }^{42}$ Si: single-particle levels

DD-PC1

Probability density			
	$K=0$	$K=2$	$Q_{\text {spec. }}$
2_{1}^{+}	88.4	11.6	-10.9
2_{2}^{+}	21.5	78.5	7.8
2_{3}^{+}	80.0	20.0	-9.6

Global study of quadrupole correlation effects

Definition of correlation energies

1) The static deformation energy is the energy difference between a mean-field configuration q and the corresponding spherical state:
$E_{\mathrm{def}}(q)=E\left(Q_{2}=0\right)-E(q)$

Static deformation energy as a function of neutron number N. Isotopic chains are connected by lines.
M. Bender, G. F. Bertsch, and P.-H. Heenen

2) The energy gained by the projection of a deformed mean-field state $\mid q>$ (on angular momentum $\mathrm{I}=0$) is its rotational energy:

$$
E_{\mathrm{rot}}(q)=E(q)-E_{0}(q)
$$

3) The rotational energy correction:

$$
E_{I=0}=\underset{\substack{\text { mean-field } \\ \text { minimun }}}{E\left(q_{\mathrm{mf}}\right)-E_{0}\left(q_{0}\right)}
$$

Rotational energy $E_{\text {rot }}\left(q_{0}\right)$ at the minimum of the $J=0$ projected energy curve.

4) The correlation energy gained by configuration mixing:

$$
E_{\mathrm{GCM}}=E_{0}\left(q_{0}\right)-E_{k=0}^{\mathrm{GCM} \text { ground state }}
$$

The total dynamical correlation energy is the energy difference between the mean-field ground state and the projected GCM ground state:

$$
\begin{aligned}
E_{\text {corr }} & =E\left(q_{\mathrm{mf}}\right)-E_{k=0} \\
& =E_{I=0}+E_{\mathrm{GCM}}
\end{aligned}
$$

(i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV .
(ii) Projection on angular momentum $\mathrm{J}=0$ provides the major part of the energy gain of up to about 4 MeV ; all nuclei gain energy by deformation.
(iii) the mixing of projected states with different intrinsic axial deformation adds a few 100 keV up to 1.5 MeV to the correlation energy.
(iv) Typically nuclei below mass $\mathrm{A} \leq 60$ have a larger correlation energy than static deformation energy, whereas the heavier deformed nuclei have larger static deformation energy than correlation energy.

