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II	  -‐	  Configura,on	  Mixing	  	  	  	  
	  



Configura2on	  mixing	  

The	  most	  important	  correla2on	  effects	  in	  nuclear	  structure	  originate	  from	  large	  amplitude	  
collec2ve	  mo2on.	  Low-‐lying	  excited	  states	  are	  admixed	  into	  the	  mean-‐field	  ground	  state.	  
These	  admixtures	  can	  be	  removed	  by	  configura2on	  mixing:	  superposi2on	  of	  mean-‐field	  
states.	  
Correla2ons	  include	  nuclear	  surface	  vibra2ons	  (low-‐lying	  excita2ons)	  and	  zero-‐energy	  
modes	  (transla2on,	  rota2on,	  ...)	  related	  to	  restora2on	  of	  symmetries	  which	  are	  broken	  by	  
the	  mean-‐field	  ground	  state.	  	  



	  The	  Generator	  Coordinate	  Method	  

→ star2ng	  from	  a	  set	  of	  mean-‐field	  states	  |Φ(q)	  >	  that	  depend	  on	  the	  collec2ve	  coordinate	  q,	  
approximate	  eigenstates	  of	  the	  Hamiltonian	  H	  are	  obtained	  by	  GCM	  configura2on	  mixing:	  

Generator	  coordinate	  
(collec2ve	  variable)	   Intrinsic	  (e.g.	  HFB)	  

wave	  func2ons	  

Weight	  func2ons	  

The	  weight	  func2ons	  fk(q)	  are	  found	  by	  requiring	  that	  the	  	  expecta2on	  value:	  	  

is	  sta2onary	  with	  respect	  to	  an	  arbitrary	  varia2on	  δfk.	  

Hill-‐Wheeler	  equa2on:	  

|⇥k� =
�

dq |�(q)� fk(q)

Ek =
��k|Ĥ|�k⇥
��k|�k⇥

Z
dq0 [H(q, q0)� EkI(q, q0)]fk(q0) = 0



Hamiltonian	  kernel	   overlap	  kernel	  

The	  weight	  func2ons	  are	  not	  orthonormal	  and	  they	  cannot	  be	  interpreted	  as	  collec2ve	  wave	  
func2ons	  for	  the	  variable	  q.	  This	  role	  is	  assigned	  to	  the	  func2ons:	  

The	  matrix	  element	  of	  any	  operator	  between	  two	  GCM	  states	  can	  be	  expressed	  in	  terms	  of	  
the	  gk's	  as:	  

→ for	  any	  operator	  O:	  

H(q, q�) = ⇥�(q)|Ĥ|�(q�)⇤ I(q, q�) = ⇥�(q)|�(q�)⇤

O(q, q�) = ⇥�(q)|Ô|�(q�)⇤

gk(q) =
�

dq� I1/2(q, q�) fk(q�)

⇥�k|Ô|�l⇤ =
��

dq dq⇥ g�
k(q) Õ(q, q⇥) gl(q⇥)



with:	  

The	  GCM	  energies	  Ek	  and	  func2ons	  gk	  are	  the	  eigenvalues	  and	  eigenvectors	  of	  the	  hermi2an	  
integral	  operator	  

Gaussian	  Overlap	  Approxima2on:	  the	  overlap	  kernel	  is	  replaced	  by	  a	  Gaussian	  func2on	  of	  
the	  form:	  

based	  on	  the	  rapid	  decrease	  of	  the	  matrix	  elements	  between	  wave	  func2ons	  corresponding	  
to	  different	  values	  of	  the	  collec2ve	  variable.	  	  

Õ(q, q�) =
��

dq�� dq��� I1/2(q, q��)O(q��, q���) I1/2(q���, q�)

�
dq� H̃(q, q�) gk(q�) = Ekgk(q)

I(q, q�) ⇥ IG(q, q�) = exp

⇤
�1

2

�
(q � q�)

a(q̄)

⇥2
⌅



	  Choice	  of	  the	  collec2ve	  coordinate	  

2.	  SHAPE	  DEGREES	  OF	  FREEDOM:	  the	  	  
collec2ve	  space	  is	  generated	  by	  	  
constrained	  mean-‐field	  calcula2ons.	  	  	  
The	  genera2ng	  func2on	  is	  unknown	  	  
and	  has	  to	  be	  determined	  by	  the	  	  
diagonaliza2on	  of	  the	  Hill-‐Wheeler	  	  
equa2on.	  

The	  star2ng	  point	  is	  usually	  a	  	  
constrained	  HFB	  calcula2on	  of	  	  
the	  poten2al	  energy	  surface	  with	  	  
the	  mass	  quadrupole	  components	  
as	  constrained	  quan22es.	  

1.   RESTORATION	  OF	  BROKEN	  SYMMETRIES:	  the	  family	  of	  wave	  func2ons	  |Φ(q)	  >	  is	  
generated	  by	  the	  symmetry	  opera2ons:	  rota2on	  in	  coordinate	  space	  for	  angular	  
momentum,	  rota2on	  in	  gauge	  space	  for	  par2cle	  number.	  The	  func2ons	  fk(q)	  are	  a	  
priori	  determined	  by	  the	  proper2es	  of	  the	  symmetry	  operator	  (this	  is	  strictly	  valid	  only	  
for	  Abelian	  symmetry	  groups	  –	  U(1)	  par2cle	  number.	  For	  non-‐Abelian	  groups	  the	  
weight	  func2ons	  are	  not	  completely	  determined	  by	  the	  symmetry).	  	  0
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Configura2on	  mixing	  of	  mean-‐field	  wave	  func2ons	  projected	  on	  angular	  momentum	  and	  
par2cle	  number:	  

| JM
↵ >=

X

j,K

fJK
↵ (qj)P̂

J
MK P̂Z P̂N |�(qj) >

The	  weight	  func2ons	  are	  determined	  by	  requiring	  that	  the	  expecta2on	  value	  of	  the	  
energy	  is	  sta2onary	  with	  respect	  to	  an	  arbitrary	  varia2on:	  	  

�EJ = �
<  JM

↵ |Ĥ| JM
↵ >

<  JM
↵ | JM

↵ >
= 0

The	  Hill-‐Wheeler	  equa2on:	  

X

j,K

fJK
↵ (qj)

⇣
h�(qi)| ĤP̂ J

MK P̂N P̂Z |�(qj)i � EJ
↵ h�(qi)| P̂ J

MK P̂N P̂Z |�(qj)i
⌘
= 0

presents	  a	  generalized	  eigenvalue	  problem.	  The	  weight	  func2ons	  are	  not	  orthogonal	  and	  
cannot	  be	  interpreted	  as	  collec2ve	  wave	  func2ons	  for	  the	  variable	  q.	  	  



X

j

HJ(qi, qj)f
J
↵ (qj) = EJ

↵

X

j

N J(qi, qj)f
J
↵ (qj)

gJ↵(qi) =
X

j

(N J)1/2(qi, qj)f
J
↵ (qj)

X

j

H̃J(qi, qj)g
J
↵(qj) = E↵g

J
↵(qi)

H̃J(qi, qj) =
X

k,l

(N J)�1/2(qi, qk)HJ(qk, ql)(N J)�1/2(ql, qj)

…	  define	  a	  new	  set	  of	  func2ons:	  

With	  this	  transforma2on	  the	  Hill-‐Wheeler	  equa2on	  defines	  an	  ordinary	  eigenvalue	  
problem:	  

with:	  

The	  func2ons	  gJα(qi)	  are	  orthonormal	  and	  play	  the	  role	  of	  collec2ve	  wave	  func2ons.	  	  
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Example:	  	  Self-‐consistent	  mean-‐	  
field	  calcula2on	  which	  includes	  
correla2ons	  related	  to	  restora2on	  	  
of	  broken	  symmetries	  (rota2onal,	  
par2cle	  number)	  and	  to	  fluctua2ons	  	  
of	  collec2ve	  variables	  (quadrupole	  
deforma2on).	  

1.  Mean-‐field	  poten2al	  energy	  	  
curve	  calculated	  with	  a	  constraint	  
on	  the	  quadrupole	  moment.	  
	  
2.	  Angular-‐momentum	  and	  par2cle	  
-‐number	  projected	  energy	  curves.	  
	  
3.	  The	  Hamiltonian	  is	  diagonalized	  	  
within	  each	  of	  the	  collec2ve	  sub-‐	  
spaces	  	  of	  the	  nonorthogonal	  bases	  
|J,	  q>	  by	  using	  the	  Generator	  	  
Coordinate	  Method.	  



	  Angular	  momentum	  projec2on	  and	  configura2on	  mixing:	  154Sm	  	  
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Men-‐field	  energy	  curve	  of	  154Sm	  (dashed),	  and	  the	  corresponding	  angular-‐momentum	  
projected	  (J	  =	  0+;	  2+;	  4+	  ,	  and	  6+)	  energy	  curves,	  as	  func2ons	  of	  the	  axial	  deforma2on	  β.	  
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Angular-‐momentum	  projected	  GCM	  results	  for	  the	  excita2on	  energies	  and	  B(E2)	  values	  
(in	  Weisskopf	  units)	  of	  the	  lowest	  two	  bands	  in	  154Sm,	  in	  comparison	  to	  data.	  



→	  triaxial	  shapes,	  breaking	  2me-‐reversal	  	  
invariance,	  different	  deforma2ons	  for	  	  
proton	  and	  neutron	  distribu2ons,	  ...	  	  

→	  larger	  varia2onal	  space	  for	  projected	  GCM	  calcula2ons!	  

3D	  AMP+GCM	  model	  



Collec2ve	  Hamiltonian	  in	  five	  dimensions	  	  

→	  quadrupole	  tensor:	  

Phys. Scr. T154 (2013) 014016 S G Rohoziński

interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)

@�µ@�⌫

� gµ⌫(�)v(�). (11)

2
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely
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= exp
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely
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with
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)
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� gµ⌫(�)v(�). (11)
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)
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� gµ⌫(�)v(�). (11)
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely
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3. The GOA

3.1. Gaussian approximation for the kernels

We expect that the overlap kernel drops quickly from 1 to 0 when the differences γµ = αµ−α′
µ

of the components of the tensors α and α′ increase from 0. Therefore, the logarithm of the
kernel rather than the kernel itself as a function of γ can be approximated by the power series

ln I
(
β + 1

2γ,β − 1
2γ

)
= − 1

2 gµν (β)γµγν + · · · , (3.1)

where β = 1
2 (α + α′) and the Einstein contraction rule is applied to the upper and lower

indices µ, ν. When in expansion (3.1) we keep only the term quadratic in γ for an arbitrary
β, we have the local Gaussian approximation for the overlap kernel:

I
(
β + 1

2γ,β − 1
2γ

)
= exp

(
− 1

2 gµν (β)γµγν

)
. (3.2)

The matrix g is real, symmetric and positive definite. We use a similar approximation for the
quotient

H
(
β + 1

2γ,β − 1
2γ

)

I
(
β + 1

2γ,β − 1
2γ

) = v(β) − 1
2 hµν (β)γµγν + · · · . (3.3)

The matrix h is real and symmetric.
Both matrices, gµν and hµν , are symmetric quadrupole bitensors in the interpretation

of appendix B, whereas v is a scalar. We shall refer to the matrix g as the metric tensor.
Throughout the paper, the upper and lower indices of matrices are connected with the complex
conjugation of the spherical tensors according to (2.9), and not with the contravariant and
covariant components of tensors in the Riemannian space. A separate symbol is used for the
inverse metric tensor, namely g−1 = f.

3.2. Eigenvalue equation for the Gaussian overlap kernel

To find the eigenfunctions of the Gaussian overlap kernel (3.2), it is convenient to reduce the
exponent of the Gaussian function to the sum of squares of five variables. It is a simple thing
to do for the single-generator coordinate [33]. It is not so simple in the case of a set of a few
variables. Here, we adopt the definition of the new variables given by Onishi and Une [17].
Namely, we introduce the five new real variables tk (k = 0, 2, x, y, z) through a line integral in
the five-dimensional space of vectors a of (2.10),

tk(a) =
∫ a ∑

l

rkl(a′) da′
l . (3.4)

The lower integration limit is omitted in the notation of the integral because it is not relevant
here. The matrix r is taken to be the positive-definite symmetric square root matrix of g defined
by (B.8) with m = g and m1/2 = r. It fulfils relation (B.7), namely

gkl(a) =
∑

i

rki(a)ril(a), (3.5)

where gkl are the Cartesian components of g defined according to (B.4). The variables tk are
defined well if the line integral does not depend on the path of integration. It is so for the
irrotational field rkl(a), i.e. for

∂rkl

∂ai
− ∂rki

∂al
= 0, (3.6)

which we assume for use in further considerations. However, we do not know in advance
whether it is really fulfilled.
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3. The GOA
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3.2. Eigenvalue equation for the Gaussian overlap kernel

To find the eigenfunctions of the Gaussian overlap kernel (3.2), it is convenient to reduce the
exponent of the Gaussian function to the sum of squares of five variables. It is a simple thing
to do for the single-generator coordinate [33]. It is not so simple in the case of a set of a few
variables. Here, we adopt the definition of the new variables given by Onishi and Une [17].
Namely, we introduce the five new real variables tk (k = 0, 2, x, y, z) through a line integral in
the five-dimensional space of vectors a of (2.10),

tk(a) =
∫ a ∑

l

rkl(a′) da′
l . (3.4)

The lower integration limit is omitted in the notation of the integral because it is not relevant
here. The matrix r is taken to be the positive-definite symmetric square root matrix of g defined
by (B.8) with m = g and m1/2 = r. It fulfils relation (B.7), namely

gkl(a) =
∑

i

rki(a)ril(a), (3.5)

where gkl are the Cartesian components of g defined according to (B.4). The variables tk are
defined well if the line integral does not depend on the path of integration. It is so for the
irrotational field rkl(a), i.e. for

∂rkl

∂ai
− ∂rki

∂al
= 0, (3.6)

which we assume for use in further considerations. However, we do not know in advance
whether it is really fulfilled.
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)

@�µ@�⌫

� gµ⌫(�)v(�). (11)

2

→	  approximate	  the	  overlap	  kernel	  by	  a	  Gaussian	  func2on:	  
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It follows from time reversal invariance that the matrix elements obey the relations

⟨φ(d)|φ(d′)⟩ = ⟨φ(d)|φ(d′)⟩∗ = ⟨φ(d′)|φ(d)⟩,
⟨φ(d)|Ĥ|φ(d′)⟩ = ⟨φ(d)|Ĥ|φ(d′)⟩∗ = ⟨φ(d′)|Ĥ|φ(d)⟩, (2.5)

i.e. they are real and symmetric with respect to d and d′. On the other hand, the matrix
elements ⟨φ(d)|Ĵu|φ(d′)⟩ and ⟨φ(d)|ĴuĤ|φ(d′)⟩ are imaginary and antisymmetric, because
the angular-momentum operators Ĵu are time-odd.

It follows from the D2 symmetry (2.3b) of |φ(d)⟩ and |φi(d)⟩ that, in particular,
the matrix elements of type ⟨φi(d)|Ĵu|φ(d)⟩, ⟨φi(d)|ĴuĤ|φ(d)⟩ and ⟨φ(d)|ĴuĴu′ |φ(d)⟩,
⟨φ(d)|ĴuĴu′Ĥ|φ(d)⟩ for u ̸= u′ all vanish.

Since |φ(d)⟩ does not possess rotational symmetry, the state rotated by the three Euler
angles ω = (ω1,ω2,ω3) from the ranges 0 ! ω1 < 2π , 0 ! ω2 ! π , 0 ! ω3 < 2π

|$(d,ω)⟩ = R̂(ω)|φ(d)⟩ (2.6)

is an equally good ground state of the mean-field Hamiltonian. The unitarity of R̂(ω) assures
us that it is also normalized to 1. The operator R̂(ω) is time-even and thus the matrix elements
between the states |$(d,ω)⟩ and |$(d′,ω′)⟩ corresponding to those of (2.5) are also real
and symmetric with respect to the sets of variables (d,ω) and (d′,ω′). States (2.6) will play
the role of the generating states and the five variables d0, d2, ω1, ω2 and ω3 can be used as
the generator coordinates for the quadrupole collective excitations. As a matter of fact, other
generator coordinates, namely the laboratory quadrupole deformations defined below, will be
used.

2.2. Quadrupole coordinates

We introduce a new set of five variables, namely αµ, µ = −2, . . . ,+2, by the relation

αµ = d0Dµ0(ω) + d2Dµ2(ω), (2.7)

where the semi-Cartesian Wigner functions Dµ0 and Dµ2, defined by (A.1), are combinations of
the usual Wigner functions D2

µν . They play the role of the laboratory deformation parameters.
The Jacobian of transformation (2.7) is equal to (cf [1])

W (d,ω) =
∣∣d2

(
3d2

0 − d2
2

)∣∣ sin ω2 (2.8)

and, therefore, the transformation is reversible in the entire assumed open ranges of the
variables d and ω. It is seen from (2.7) that αµ are the components of an electric (i.e. with
positive parity), real (i.e. α∗

µ = (−1)µα−µ) quadrupole tensor α in the three-dimensional
physical space. The complex conjugate components are denoted with the superscript, e.g.

αµ = α∗
µ = (−1)µα−µ. (2.9)

The frame of axes with orientation ω = 0 is the frame of principal axes (intrinsic
frame) of α, because the intrinsic components of α are equal to α0(ω = 0) = d0,
α2(ω = 0) = α−2(ω = 0) = d2/

√
2 and α1(ω = 0) = α−1(ω = 0) = 0.

Instead of the complex spherical components of the tensor, the five truly real coordinates
ak, k = 0, 2, x, y, z, namely

ak = Dµ
k (ω = 0)αµ = Cµ

k αµ, (2.10)

can be used, where the Einstein contraction rule is applied to summing of the Greek upper
and lower indices µ = −2, . . . ,+2 of the spherical components. The rule is not applied to
the Latin Cartesian indices. These coordinates can be treated as the Cartesian components of
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vector a in five-dimensional space. This is because the scalar product of the two quadrupole
tensors, α and β, is

α · β =
∑

µ

(−1)µαµβ−µ = αµβµ =
∑

k

akbk = a · b. (2.11)

In connection with (2.11), the volume element in the space of the quadrupole coordinates is

d#(α) = $k dak =
∣∣d2

(
3d2

0 − d2
2

)∣∣ sin ω2 dd0 dd2 dω1 dω2 dω3. (2.12)

All functions of the deformation d and the Euler angles, ω, can be treated as functions of either
the tensor α or vector a. Here, we prefer to use the complex variables, αµ, for convenience.
However, we have in mind that the integration variables are always real: either ak or d and ω

as is seen in (2.12). The relation between the derivatives with respect to αµ and the derivatives
with respect to the Euler angles and the intrinsic components d0, d2 reads [41, 1]

∂

∂αµ

=
∑

k

Cµ
k

∂

∂ak

= Dµ
0 (ω)

∂

∂d0
+ Dµ

2 (ω)
∂

∂d2
+ iDµ

z (ω)
1

2dz
Lz(ω) − iDµ

x (ω)
1

2dx
Lx(ω)

− iDµ
y (ω)

1
2dy

Ly(ω), (2.13)

where

dx = − 1
2 (

√
3d0 + d2), dy = 1

2 (
√

3d0 − d2), dz = d2, (2.14)

and Lx(ω), Ly(ω)and Lz(ω) are the differential operators with respect to the Euler angles and
are interpreted as the intrinsic components of the drift angular momentum of the rotation of
the intrinsic frame (equation (2.15) in [1]).

2.3. Trial states for the collective quadrupole excitations

We denote the generating states (2.6) as |'(α)⟩. Then trial states for the quadrupole collective
motion are taken in the form

|([ϕ]⟩ =
∫

ϕ(α)|'(α)⟩ d#(α). (2.15)

The five components of the quadrupole tensor α play the role of the generator coordinates and
the function ϕ(α) is the weight function. The variational principle leads to the Hill–Wheeler
integral equation of the form

∫
[H(α,α′) − EI(α,α′)]ϕ(α′) d#(α′) = 0 (2.16)

for the function ϕ of the generator coordinates. The equation is determined by the two real
symmetric kernels: the overlap kernel

I(α,α′) = ⟨'(α)|'(α′)⟩ (2.17)

and the energy kernel

H(α,α′) = ⟨'(α)|Ĥ|'(α′)⟩. (2.18)

The overlap kernel (2.17) is non-diagonal and equation (2.16) for the weight functions
constitutes a non-orthogonal eigenvalue equation.
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)

@�µ@�⌫

� gµ⌫(�)v(�). (11)

2

→ nota2on:	  

⇒	  real,	  symmetric	  and	  posi2ve	  definite	  matrix:	  

→ approxima2on	  for	  the	  energy	  kernel:	  
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)

@�µ@�⌫

� gµ⌫(�)v(�). (11)
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interaction with other degrees of freedom can be taken into
account.

Let the considered nucleus be described microscopically
by the many-body Hamiltonian Ĥ which is invariant under
the OT (3) group of transformations, i.e. the superposition
of time reversal T̂ and the orthogonal transformations (the
rotations R̂(!) and the space inversion P̂) in the physical
three-dimensional space. In order to describe its quadrupole
collective excitations by means of the GCM, we should
choose a suitable generating state which depends on the
generator coordinates representing the quadrupole degrees
of freedom. We start with an intrinsic state |�(d)i being
the ground state of the mean-field Hamiltonian of the
nucleus with a given deformation d = (d0, d2) defined by
the two intrinsic components of the quadrupole moment.
State |�(d)i, which has the broken rotational symmetry, is
assumed to be normalized to unity for every d , and even
under time reversal T̂ , parity P̂ and the three signatures
with respect to the intrinsic axes. The assumed symmetries
tell us that it is the state of an even–even nucleus. The set
of the deformation-dependent intrinsic states turned out to
an arbitrary orientation with respect to the laboratory frame,
namely

|8(d, !)i = R̂(!)|�(d)i, (1)

where ! = (!1, !2, !3) are the three Euler angles of the
orientation, are supposed to play the role of the GCM
generating states for the quadrupole collective motion. Then,
the trial state is taken in the form

|9[']i =
Z

'(d, !)|8(d, !)i d�(d) d�(!), (2)

where d�(d) = |d2(3d2
0 � d2

2 )|dd0 dd2 and d�(!) =
sin !2 d!1 d!2 d!3. The variational principle leads to
the Hill–Wheeler integral (non-orthogonal) eigenvalue
equation of the form

Z ⇥H(d, !; d 0, !0) � EI(d, !; d 0, !0)
⇤

⇥ '(d 0, !0) d�(d 0)d�(!0) = 0. (3)

The equation is determined by the two real symmetric kernels:
the overlap kernel I(d, !; d 0, !0) = h8(d, !)|8(d 0, !0)i and
the energy kernel H(d, !; d 0, !0) = h8(d, !)|Ĥ |8(d 0, !0)i.
There are some technical and essential problems with
solving the above equation detected when using the angular
momentum projection procedure [6, 12, 13]. First of all,
equation (3) contains the tedious five-dimensional integration.
In addition, three-fold integration is done with respect to
the periodic angle variables having a complicated topology
(see [14]). This is perhaps one of the reasons why the
rotational part of the Bohr Hamiltonian could hardly be
derived.

To get rid of the angle coordinates, we introduce five new
variables being the five components, ↵µ, µ = �2, . . . , +2, of
the quadrupole tensor ↵ = ↵(d, !) defined by the relation

↵µ(d, !) = d0 Dµ0(!) + d2 Dµ2(!) (4)

as the generator coordinates. The semi-Cartesian Wigner
functions Dµ0 and Dµ2 are combinations of the usual Wigner

functions D2
µ⌫ [11]. Real combinations ak (k = 0, 2, x , y, z)

of components ↵µ form a vector in the five-dimensional
Euclidean space. Thus, the volume element in the space of
the quadrupole coordinates is

d�(↵) = 5k dak = d�(d) d�(!). (5)

Transformation d, ! ! ↵ is reversible in the ranges 06 d2 6p
3d0 < +1, and 06 !1 < 2⇡ , 06 !2 6 ⇡ , 06 !3 < 2⇡ of

variables d , !. The generating state |8(d, !)i = |8(↵)i can
thus be treated as a function of ↵. Finally, the trial state in the
GCM is taken in the form

|9[']i =
Z

'(↵)|8(↵)i d�(↵) (6)

and the Hill–Wheeler equation reads
Z

[H(↵, ↵0) � EI(↵, ↵0)]'(↵0) d�(↵0) = 0. (7)

Another problem with equation (7) consists in the fact that
the overlap kernel as a matrix with indices ↵ and ↵0 need
not be positive definite. This problem is usually overcome
by restricting the solution to the so-called collective subspace
spanned by the eigenstates of the overlap with the positive
eigenvalues [13]. Finally, it is possible that the overlap kernel
is equal to zero at some point (some orientation). Then, a
singularity can occur in the energy kernel when it is calculated
within the density functional approach [15]. This causes a
serious problem in solving equation (7). A similar problem
occurs at the projection onto a good particle number [16, 17].
This is beyond the scope of the present paper. However, we
can suspect analogies.

3. The Gaussian overlap approximation

In order to get rid of the troublesome singularities in
equation (7) mentioned in the previous section, we use the
GOA for the overlap kernel approximating it by the Gaussian
function which is positive everywhere and has no zeros in its
tails, namely

I(� + 1
2� , � � 1

2� ) ⇡ exp (� 1
2 gµ⌫(�)�µ�⌫), (8)

where � = 1
2 (↵ + ↵0) and �µ = ↵µ � ↵0

µ (the summation
convention for upper and lower indices is used—see [11])
with

gµ⌫(�) = �@2I(�, �)

@�µ@�⌫

. (9)

The matrix g is real, symmetric and positive definite. Usually,
the GOA for the energy kernel means additionally the
quadratic term in the quotient of kernels, namely

H(� + 1
2� , � � 1

2� )

= exp
�� 1

2 gµ⌫(�
�
�µ�⌫)

⇥
v(�) � 1

2 hµ⌫(�)�µ�⌫

⇤
(10)

with

v(�) =H(�, �),

hµ⌫(�) = �@2H(�, �)

@�µ@�⌫

� gµ⌫(�)v(�). (11)

2
The	  square	  root	  kernel	  is	  defined:	  
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The matrix h is real and symmetric as well. Within the GOA,
we overcome the difficulties mentioned in the previous section
as the Gaussian overlap kernel (8) is always positive. The
physical meaning of the GOA is not very clear. Because of
its equivalence to the Bohr Hamiltonian model (see further
below) it can be treated as the adiabatic approximation for the
quadrupole collective motion.

The square root kernel

R(↵, ⇠)

=
✓

2
⇡

◆5/4

exp
��gµ⌫

� 1
2 (⇠ + ↵)

�
(⇠µ �↵µ)(⇠⌫ �↵⌫)

�
,

(12)

such thatZ
R(↵, ⇠)R(⇠ , ↵0)

p
g(⇠) d�((⇠)) = I(↵, ↵0), (13)

where g(⇠) = det g(⇠), can be defined for the Gaussian
overlap kernel (8). The integral Hill–Wheeler equation (7)
in the GOA of (8) and (10) is reduced to an orthogonal
eigenvalue equation for the wavefunction

 (↵) =
Z
R(↵, ↵0)'(↵0) d�(↵0). (14)

It turns out that the kernel of this integral equation for  is
a local distribution depending on the Dirac delta function and
its second-order derivatives [11]. This means that the integral
equation is, in fact, a differential equation. In conclusion, the
Hill–Wheeler equation reduces to a differential eigenvalue
equation in the GOA.

4. The Bohr Hamiltonian

The five-dimensional GCM for the quadrupole collective
motion leads to the Bohr differential eigenvalue equation

H(⇠) (⇠) = E (⇠) (15)

with the Bohr Hamiltonian in the form

H = � 1

2
p

g(⇠)

@

@⇠µ

p
g(⇠)Aµ⌫(⇠)

@

@⇠⌫
+ V (⇠), (16)

where the inverse inertial bitensor is

Aµ⌫(⇠) = (g�1/2)µ(⇠)(g�1/2)⌫�(⇠) exp (� 1
81(⇠))a�(⇠),

a�(⇠) = hµ⌫(⇠)(g�1/2)µ(⇠)(g�1/2)�⌫(⇠) (17)

and the potential reads

V (⇠) = exp (� 1
81(⇠))[v(⇠) � 1

2 hµ⌫(⇠)(g�1)µ⌫(⇠)]

� 1
8

1
p

g(⇠)

@

@⇠µ

 
p

g(⇠)(g�1/2)µ(⇠)(g�1/2)⌫�(⇠)

⇥ @ exp (� 1
81(⇠))a�(⇠)

@⇠⌫

!

. (18)

Matrices g�1 and g�1/2 are obviously such that g · g�1 = 1 and
g�1/2 · g�1/2 = g�1. The Laplacian is

1(⇠) = 1
p

g(⇠)

@

@⇠µ

p
g(⇠)(g�1)µ⌫(⇠)

@

@⇠⌫
. (19)

One can say that the equivalence between the Hill–Wheeler
equation (7) and the differential equation (15) in the GOA
is formal only since formulae (17) and (18) for the inverse
inertial bitensor and the potential, respectively, contain
the exponential function of the Laplacian and, thus, the
infinite number of differentiations (see [8]). However, the
Bohr Hamiltonian can be determined with an arbitrary
accuracy performing step by step the successive terms with
the powers of the Laplacian in the corresponding power
series provided that the procedure is convergent. The lowest
order approximation means putting exp (� 1

81(⇠)) ⇡ 1 in
equations (17) and (18).

The inverse inertial bitensor of equation (17) determines
the kinetic energy of the quadrupole motion which is a
mixture of the vibrational and the rotational motion. In
spherical nuclei the vibrations and rotations are coupled so
strongly that the five-dimensional vibrations with respect to
the laboratory frame are observed in the end. In deformed
nuclei the quadrupole motion consists of separate rotations
and vibrations. In general, a separate description of the
rotational and the vibrational motion, what is often practiced
so far (e.g. [18, 19]), can lead to inconsistencies. In
particular, there is an opinion that a double variational
method with ‘generator velocities’ in addition to the generator
coordinates should be applied to describe the rotation [20] (see
also [6, 21]). The collective potential of equation (18) contains
the zero-point energy corrections associated with both, the
vibrational and the rotational degrees of freedom. In general,
the vibrational and rotational zero-point energy correction
terms are not additive and must not be calculated separately
(however, see, e.g., [22–26]). Whether the Bohr Hamiltonian
in the form of equation (15) describes well enough the
quadrupole excitations in real nuclei, it is a question of
applications to specific cases. It should be remembered that
the collective model is a bridge between a microscopic
many-body theory and observable quantities.

Previous schematic derivations of the Bohr Hamiltonian
(see, e.g., [6, 10, 24]), which have not taken into account
all the nuances of the present case of the five-dimensional
quadrupole motion, have, roughly speaking, consisted of the
following trick. Instead of using equation (10) the energy
kernel is presented in the following form (see equation (13)):

H(↵, ↵0) =
Z
R(↵, ⇠)h(↵, ↵0)R(⇠ , ↵0)

p
g(⇠) d�(⇠). (20)

Then, function h(↵, ↵0) is expanded in power series up to
the second order for ↵µ and ↵0

µ around point ⇠µ, which is
the peak of both Gaussian functions, R(↵, ⇠) and R(⇠ , ↵0),
inside the integral. It is an approximation stronger than the
GOA in equation (10) because it assumes in addition that
h(↵, ↵0) is a slow varying function of ↵ and ↵0 separately. As a
result, the inverse inertial bitensor and the potential in, at most,
the second-order approximation of the exponential Laplace
operator can be obtained in comparison with equations (17)
and (18).

5. Summary

Knowing an intrinsic deformed state which is a function
of the quadrupole deformation, we can generate the

3

⇒	  the	  integral	  Hill-‐Wheeler	  equa2on	  in	  the	  GOA	  reduces	  to	  an	  orthogonal	  eigenvalue	  	  
equa2on	  for	  the	  collec2ve	  wave	  func2on:	  

Phys. Scr. T154 (2013) 014016 S G Rohoziński

The matrix h is real and symmetric as well. Within the GOA,
we overcome the difficulties mentioned in the previous section
as the Gaussian overlap kernel (8) is always positive. The
physical meaning of the GOA is not very clear. Because of
its equivalence to the Bohr Hamiltonian model (see further
below) it can be treated as the adiabatic approximation for the
quadrupole collective motion.

The square root kernel

R(↵, ⇠)

=
✓

2
⇡

◆5/4

exp
��gµ⌫

� 1
2 (⇠ + ↵)

�
(⇠µ �↵µ)(⇠⌫ �↵⌫)

�
,

(12)

such thatZ
R(↵, ⇠)R(⇠ , ↵0)

p
g(⇠) d�((⇠)) = I(↵, ↵0), (13)

where g(⇠) = det g(⇠), can be defined for the Gaussian
overlap kernel (8). The integral Hill–Wheeler equation (7)
in the GOA of (8) and (10) is reduced to an orthogonal
eigenvalue equation for the wavefunction

 (↵) =
Z
R(↵, ↵0)'(↵0) d�(↵0). (14)

It turns out that the kernel of this integral equation for  is
a local distribution depending on the Dirac delta function and
its second-order derivatives [11]. This means that the integral
equation is, in fact, a differential equation. In conclusion, the
Hill–Wheeler equation reduces to a differential eigenvalue
equation in the GOA.

4. The Bohr Hamiltonian

The five-dimensional GCM for the quadrupole collective
motion leads to the Bohr differential eigenvalue equation

H(⇠) (⇠) = E (⇠) (15)

with the Bohr Hamiltonian in the form

H = � 1

2
p

g(⇠)

@

@⇠µ

p
g(⇠)Aµ⌫(⇠)

@

@⇠⌫
+ V (⇠), (16)

where the inverse inertial bitensor is

Aµ⌫(⇠) = (g�1/2)µ(⇠)(g�1/2)⌫�(⇠) exp (� 1
81(⇠))a�(⇠),

a�(⇠) = hµ⌫(⇠)(g�1/2)µ(⇠)(g�1/2)�⌫(⇠) (17)

and the potential reads

V (⇠) = exp (� 1
81(⇠))[v(⇠) � 1

2 hµ⌫(⇠)(g�1)µ⌫(⇠)]

� 1
8

1
p

g(⇠)

@

@⇠µ

 
p

g(⇠)(g�1/2)µ(⇠)(g�1/2)⌫�(⇠)

⇥ @ exp (� 1
81(⇠))a�(⇠)

@⇠⌫

!

. (18)

Matrices g�1 and g�1/2 are obviously such that g · g�1 = 1 and
g�1/2 · g�1/2 = g�1. The Laplacian is

1(⇠) = 1
p

g(⇠)

@

@⇠µ

p
g(⇠)(g�1)µ⌫(⇠)

@

@⇠⌫
. (19)

One can say that the equivalence between the Hill–Wheeler
equation (7) and the differential equation (15) in the GOA
is formal only since formulae (17) and (18) for the inverse
inertial bitensor and the potential, respectively, contain
the exponential function of the Laplacian and, thus, the
infinite number of differentiations (see [8]). However, the
Bohr Hamiltonian can be determined with an arbitrary
accuracy performing step by step the successive terms with
the powers of the Laplacian in the corresponding power
series provided that the procedure is convergent. The lowest
order approximation means putting exp (� 1

81(⇠)) ⇡ 1 in
equations (17) and (18).

The inverse inertial bitensor of equation (17) determines
the kinetic energy of the quadrupole motion which is a
mixture of the vibrational and the rotational motion. In
spherical nuclei the vibrations and rotations are coupled so
strongly that the five-dimensional vibrations with respect to
the laboratory frame are observed in the end. In deformed
nuclei the quadrupole motion consists of separate rotations
and vibrations. In general, a separate description of the
rotational and the vibrational motion, what is often practiced
so far (e.g. [18, 19]), can lead to inconsistencies. In
particular, there is an opinion that a double variational
method with ‘generator velocities’ in addition to the generator
coordinates should be applied to describe the rotation [20] (see
also [6, 21]). The collective potential of equation (18) contains
the zero-point energy corrections associated with both, the
vibrational and the rotational degrees of freedom. In general,
the vibrational and rotational zero-point energy correction
terms are not additive and must not be calculated separately
(however, see, e.g., [22–26]). Whether the Bohr Hamiltonian
in the form of equation (15) describes well enough the
quadrupole excitations in real nuclei, it is a question of
applications to specific cases. It should be remembered that
the collective model is a bridge between a microscopic
many-body theory and observable quantities.

Previous schematic derivations of the Bohr Hamiltonian
(see, e.g., [6, 10, 24]), which have not taken into account
all the nuances of the present case of the five-dimensional
quadrupole motion, have, roughly speaking, consisted of the
following trick. Instead of using equation (10) the energy
kernel is presented in the following form (see equation (13)):

H(↵, ↵0) =
Z
R(↵, ⇠)h(↵, ↵0)R(⇠ , ↵0)

p
g(⇠) d�(⇠). (20)

Then, function h(↵, ↵0) is expanded in power series up to
the second order for ↵µ and ↵0

µ around point ⇠µ, which is
the peak of both Gaussian functions, R(↵, ⇠) and R(⇠ , ↵0),
inside the integral. It is an approximation stronger than the
GOA in equation (10) because it assumes in addition that
h(↵, ↵0) is a slow varying function of ↵ and ↵0 separately. As a
result, the inverse inertial bitensor and the potential in, at most,
the second-order approximation of the exponential Laplace
operator can be obtained in comparison with equations (17)
and (18).

5. Summary

Knowing an intrinsic deformed state which is a function
of the quadrupole deformation, we can generate the

3

⇒	  the	  Bohr	  differen2al	  eigenvalue	  equa2on:	  
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The matrix h is real and symmetric as well. Within the GOA,
we overcome the difficulties mentioned in the previous section
as the Gaussian overlap kernel (8) is always positive. The
physical meaning of the GOA is not very clear. Because of
its equivalence to the Bohr Hamiltonian model (see further
below) it can be treated as the adiabatic approximation for the
quadrupole collective motion.

The square root kernel
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(12)

such thatZ
R(↵, ⇠)R(⇠ , ↵0)

p
g(⇠) d�((⇠)) = I(↵, ↵0), (13)

where g(⇠) = det g(⇠), can be defined for the Gaussian
overlap kernel (8). The integral Hill–Wheeler equation (7)
in the GOA of (8) and (10) is reduced to an orthogonal
eigenvalue equation for the wavefunction

 (↵) =
Z
R(↵, ↵0)'(↵0) d�(↵0). (14)

It turns out that the kernel of this integral equation for  is
a local distribution depending on the Dirac delta function and
its second-order derivatives [11]. This means that the integral
equation is, in fact, a differential equation. In conclusion, the
Hill–Wheeler equation reduces to a differential eigenvalue
equation in the GOA.

4. The Bohr Hamiltonian

The five-dimensional GCM for the quadrupole collective
motion leads to the Bohr differential eigenvalue equation

H(⇠) (⇠) = E (⇠) (15)

with the Bohr Hamiltonian in the form

H = � 1

2
p

g(⇠)

@

@⇠µ

p
g(⇠)Aµ⌫(⇠)

@

@⇠⌫
+ V (⇠), (16)

where the inverse inertial bitensor is

Aµ⌫(⇠) = (g�1/2)µ(⇠)(g�1/2)⌫�(⇠) exp (� 1
81(⇠))a�(⇠),

a�(⇠) = hµ⌫(⇠)(g�1/2)µ(⇠)(g�1/2)�⌫(⇠) (17)

and the potential reads

V (⇠) = exp (� 1
81(⇠))[v(⇠) � 1

2 hµ⌫(⇠)(g�1)µ⌫(⇠)]

� 1
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81(⇠))a�(⇠)

@⇠⌫

!

. (18)

Matrices g�1 and g�1/2 are obviously such that g · g�1 = 1 and
g�1/2 · g�1/2 = g�1. The Laplacian is

1(⇠) = 1
p

g(⇠)

@

@⇠µ

p
g(⇠)(g�1)µ⌫(⇠)

@

@⇠⌫
. (19)

One can say that the equivalence between the Hill–Wheeler
equation (7) and the differential equation (15) in the GOA
is formal only since formulae (17) and (18) for the inverse
inertial bitensor and the potential, respectively, contain
the exponential function of the Laplacian and, thus, the
infinite number of differentiations (see [8]). However, the
Bohr Hamiltonian can be determined with an arbitrary
accuracy performing step by step the successive terms with
the powers of the Laplacian in the corresponding power
series provided that the procedure is convergent. The lowest
order approximation means putting exp (� 1

81(⇠)) ⇡ 1 in
equations (17) and (18).

The inverse inertial bitensor of equation (17) determines
the kinetic energy of the quadrupole motion which is a
mixture of the vibrational and the rotational motion. In
spherical nuclei the vibrations and rotations are coupled so
strongly that the five-dimensional vibrations with respect to
the laboratory frame are observed in the end. In deformed
nuclei the quadrupole motion consists of separate rotations
and vibrations. In general, a separate description of the
rotational and the vibrational motion, what is often practiced
so far (e.g. [18, 19]), can lead to inconsistencies. In
particular, there is an opinion that a double variational
method with ‘generator velocities’ in addition to the generator
coordinates should be applied to describe the rotation [20] (see
also [6, 21]). The collective potential of equation (18) contains
the zero-point energy corrections associated with both, the
vibrational and the rotational degrees of freedom. In general,
the vibrational and rotational zero-point energy correction
terms are not additive and must not be calculated separately
(however, see, e.g., [22–26]). Whether the Bohr Hamiltonian
in the form of equation (15) describes well enough the
quadrupole excitations in real nuclei, it is a question of
applications to specific cases. It should be remembered that
the collective model is a bridge between a microscopic
many-body theory and observable quantities.

Previous schematic derivations of the Bohr Hamiltonian
(see, e.g., [6, 10, 24]), which have not taken into account
all the nuances of the present case of the five-dimensional
quadrupole motion, have, roughly speaking, consisted of the
following trick. Instead of using equation (10) the energy
kernel is presented in the following form (see equation (13)):

H(↵, ↵0) =
Z
R(↵, ⇠)h(↵, ↵0)R(⇠ , ↵0)

p
g(⇠) d�(⇠). (20)

Then, function h(↵, ↵0) is expanded in power series up to
the second order for ↵µ and ↵0

µ around point ⇠µ, which is
the peak of both Gaussian functions, R(↵, ⇠) and R(⇠ , ↵0),
inside the integral. It is an approximation stronger than the
GOA in equation (10) because it assumes in addition that
h(↵, ↵0) is a slow varying function of ↵ and ↵0 separately. As a
result, the inverse inertial bitensor and the potential in, at most,
the second-order approximation of the exponential Laplace
operator can be obtained in comparison with equations (17)
and (18).

5. Summary

Knowing an intrinsic deformed state which is a function
of the quadrupole deformation, we can generate the
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The matrix h is real and symmetric as well. Within the GOA,
we overcome the difficulties mentioned in the previous section
as the Gaussian overlap kernel (8) is always positive. The
physical meaning of the GOA is not very clear. Because of
its equivalence to the Bohr Hamiltonian model (see further
below) it can be treated as the adiabatic approximation for the
quadrupole collective motion.

The square root kernel

R(↵, ⇠)

=
✓

2
⇡

◆5/4

exp
��gµ⌫

� 1
2 (⇠ + ↵)

�
(⇠µ �↵µ)(⇠⌫ �↵⌫)

�
,

(12)

such thatZ
R(↵, ⇠)R(⇠ , ↵0)

p
g(⇠) d�((⇠)) = I(↵, ↵0), (13)

where g(⇠) = det g(⇠), can be defined for the Gaussian
overlap kernel (8). The integral Hill–Wheeler equation (7)
in the GOA of (8) and (10) is reduced to an orthogonal
eigenvalue equation for the wavefunction

 (↵) =
Z
R(↵, ↵0)'(↵0) d�(↵0). (14)

It turns out that the kernel of this integral equation for  is
a local distribution depending on the Dirac delta function and
its second-order derivatives [11]. This means that the integral
equation is, in fact, a differential equation. In conclusion, the
Hill–Wheeler equation reduces to a differential eigenvalue
equation in the GOA.

4. The Bohr Hamiltonian

The five-dimensional GCM for the quadrupole collective
motion leads to the Bohr differential eigenvalue equation

H(⇠) (⇠) = E (⇠) (15)

with the Bohr Hamiltonian in the form

H = � 1

2
p
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where the inverse inertial bitensor is

Aµ⌫(⇠) = (g�1/2)µ(⇠)(g�1/2)⌫�(⇠) exp (� 1
81(⇠))a�(⇠),

a�(⇠) = hµ⌫(⇠)(g�1/2)µ(⇠)(g�1/2)�⌫(⇠) (17)

and the potential reads

V (⇠) = exp (� 1
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Matrices g�1 and g�1/2 are obviously such that g · g�1 = 1 and
g�1/2 · g�1/2 = g�1. The Laplacian is

1(⇠) = 1
p

g(⇠)

@

@⇠µ

p
g(⇠)(g�1)µ⌫(⇠)

@

@⇠⌫
. (19)

One can say that the equivalence between the Hill–Wheeler
equation (7) and the differential equation (15) in the GOA
is formal only since formulae (17) and (18) for the inverse
inertial bitensor and the potential, respectively, contain
the exponential function of the Laplacian and, thus, the
infinite number of differentiations (see [8]). However, the
Bohr Hamiltonian can be determined with an arbitrary
accuracy performing step by step the successive terms with
the powers of the Laplacian in the corresponding power
series provided that the procedure is convergent. The lowest
order approximation means putting exp (� 1

81(⇠)) ⇡ 1 in
equations (17) and (18).

The inverse inertial bitensor of equation (17) determines
the kinetic energy of the quadrupole motion which is a
mixture of the vibrational and the rotational motion. In
spherical nuclei the vibrations and rotations are coupled so
strongly that the five-dimensional vibrations with respect to
the laboratory frame are observed in the end. In deformed
nuclei the quadrupole motion consists of separate rotations
and vibrations. In general, a separate description of the
rotational and the vibrational motion, what is often practiced
so far (e.g. [18, 19]), can lead to inconsistencies. In
particular, there is an opinion that a double variational
method with ‘generator velocities’ in addition to the generator
coordinates should be applied to describe the rotation [20] (see
also [6, 21]). The collective potential of equation (18) contains
the zero-point energy corrections associated with both, the
vibrational and the rotational degrees of freedom. In general,
the vibrational and rotational zero-point energy correction
terms are not additive and must not be calculated separately
(however, see, e.g., [22–26]). Whether the Bohr Hamiltonian
in the form of equation (15) describes well enough the
quadrupole excitations in real nuclei, it is a question of
applications to specific cases. It should be remembered that
the collective model is a bridge between a microscopic
many-body theory and observable quantities.

Previous schematic derivations of the Bohr Hamiltonian
(see, e.g., [6, 10, 24]), which have not taken into account
all the nuances of the present case of the five-dimensional
quadrupole motion, have, roughly speaking, consisted of the
following trick. Instead of using equation (10) the energy
kernel is presented in the following form (see equation (13)):

H(↵, ↵0) =
Z
R(↵, ⇠)h(↵, ↵0)R(⇠ , ↵0)

p
g(⇠) d�(⇠). (20)

Then, function h(↵, ↵0) is expanded in power series up to
the second order for ↵µ and ↵0

µ around point ⇠µ, which is
the peak of both Gaussian functions, R(↵, ⇠) and R(⇠ , ↵0),
inside the integral. It is an approximation stronger than the
GOA in equation (10) because it assumes in addition that
h(↵, ↵0) is a slow varying function of ↵ and ↵0 separately. As a
result, the inverse inertial bitensor and the potential in, at most,
the second-order approximation of the exponential Laplace
operator can be obtained in comparison with equations (17)
and (18).

5. Summary

Knowing an intrinsic deformed state which is a function
of the quadrupole deformation, we can generate the
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...	  nuclear	  excita2ons	  determined	  by	  quadrupole	  vibra2onal	  and	  rota2onal	  degrees	  of	  
freedom:	  

The	  en2re	  dynamics	  of	  the	  collec2ve	  Hamiltonian	  is	  governed	  by	  the	  seven	  func2ons	  of	  the	  
intrinsic	  deforma2ons	  β	  and	  γ:	  the	  collec2ve	  poten2al,	  the	  three	  mass	  parameters:	  Bββ,	  Bβγ,	  
Bγγ,	  and	  the	  three	  moments	  of	  iner2a	  Ik.	  	  
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...collec2ve	  wave	  func2ons:	  

In	  the	  simplest	  approxima2on	  the	  moments	  of	  iner2a	  are	  calculated	  from	  the	  Inglis-‐
Belyaev	  formula:	  

The	  mass	  parameters	  are	  calculated	  in	  the	  cranking	  approxima2on:	  
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Evolution of triaxial shapes in Pt nuclei: 
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Coexis2ng	  shapes	  in	  the	  N=28	  isotones	  

MeV	  



Neutron	  N=28	  spherical	  shell	  gaps	  

Exp.	  values	  
	  
4.80	  MeV	  	  
	  
4.47	  MeV	  



46Ar:	  single-‐par2cle	  levels	  



44S:	  single-‐par2cle	  levels	  



42Si:	  single-‐par2cle	  levels	  
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Probability	  density	  distribu2ons:	  



	  Global	  study	  of	  quadrupole	  correla2on	  effects	  

M.	  Bender,	  G.	  F.	  Bertsch,	  and	  P.-‐H.	  Heenen	  

Phys.	  Rev.	  C	  73,	  034322	  
	  Defini2on	  of	  correla2on	  energies	  

1)	  The	  sta+c	  deforma+on	  energy	  is	  	  
the	  energy	  difference	  between	  a	  	  
mean-‐field	  configura2on	  q	  and	  the	  	  
corresponding	  spherical	  state:	  

Sta2c	  deforma2on	  energy	  as	  a	  	  
func2on	  of	  neutron	  number	  N.	  	  
Isotopic	  chains	  are	  connected	  	  
by	  lines.	  

Edef(q) = E(Q2 = 0)� E(q)



2)	  	  The	  energy	  gained	  by	  the	  projec2on	  of	  a	  deformed	  mean-‐field	  state	  |q	  >	  	  (on	  angular	  
momentum	  I=0)	  	  is	  its	  rota+onal	  energy:	  

3)	  The	  rota+onal	  energy	  correc+on:	  

mean-‐field	  	  
minimun	  

minimum	  	  
aser	  projec2on	  

Rota2onal	  energy	  Erot(q0)	  at	  
the	  minimum	  of	  the	  J	  =	  0	  
projected	  energy	  curve.	  

Erot(q) = E(q)� E0(q)

EI=0 = E(qmf)� E0(q0)



4)	  	  The	  correla2on	  energy	  gained	  by	  configura2on	  mixing:	  
GCM	  ground	  state	  

The	  total	  dynamical	  correla+on	  energy	  is	  the	  energy	  difference	  between	  the	  mean-‐field	  
ground	  state	  and	  the	  projected	  GCM	  ground	  state:	  

EGCM = E0(q0)� Ek=0

Ecorr = E(qmf)� Ek=0

= EI=0 + EGCM
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(i)	  The	  quadrupole	  correla2on	  energy	  varies	  
between	  a	  few	  100	  keV	  and	  about	  5.5	  MeV.	  	  
	  
(ii)	  Projec2on	  on	  angular	  momentum	  J	  =	  0	  
provides	  the	  major	  part	  of	  the	  energy	  gain	  of	  
up	  to	  about	  4	  MeV;	  all	  nuclei	  gain	  energy	  by	  
deforma2on.	  	  
	  
(iii)	  the	  mixing	  of	  projected	  states	  with	  
different	  intrinsic	  axial	  deforma2on	  adds	  a	  
few	  100	  keV	  up	  to	  1.5	  MeV	  to	  the	  correla2on	  
energy.	  	  
	  
(iv)	  Typically	  nuclei	  below	  mass	  A	  ≤	  60	  have	  a	  
larger	  correla2on	  energy	  than	  sta2c	  
deforma2on	  energy,	  whereas	  the	  heavier	  
deformed	  nuclei	  have	  larger	  sta2c	  
deforma2on	  energy	  than	  correla2on	  energy.	  	  
	  


