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Techniques for Solving Nuclear

DFT Equations



Basis Expansion Methods (1/2)
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Basis expansion techniques are based on configuration space

representation of operators: one introduces a “convenient” basis of

the Hilbert space of single-particle states |a〉, 〈r|a〉 ≡ φa(r).

Solutions to the DFT equations are then expanded on that basis,

for example

• Hartree-Fock s.p. orbitals, i.e., the eigenstates |α〉 of the HF

Hamiltonian, are written

|α〉 =
∑

a

Caα|a〉; (1)

• In the HFB theory, the matrix of the Bogoliubov transformation is

written
(

Uα

Vα

)

=
∑

a

(

Uaα

Vaα

)

|a〉. (2)



Basis Expansion Methods (2/2)
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Why use basis expansion methods?

• DFT is remapped into a pure linear algebra problem, which can

be solved by successive matrix diagonalizations, or by the

conjugate gradient method using optimized libraries;

• Basis techniques can be adapted to almost any geometry, while

more direct methods become very costly for complex nuclear

shapes.

Diasadvantages

• The spatial part of s.p. states belongs to L2(R): basis expansion

techniques are exact only in the infinite limit. Every numerical

implementation leads to truncation errors.

• There are few basis that combine all the necessary properties:

analyticity, good convergence with the number or states, etc.



The Harmonic Oscillator Basis
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The Harmonic oscillator is by far the most popular basis used in

nuclear DFT calculations...

• It is analytical for the three main systems of coordinate,

Cartesian, cylindrical and spherical;

• Moshinksy transformations allow to neatly, and exactly, separate

the center-of-mass motion from the relative motion;

• The HO potential is a good approximation of the deeper part of

the nuclear mean-field.

...but it is not perfect (of course)

• Basis function behave like Gaussians at r → +∞, while realistic

nuclear wave functions should fall off like e−kr: the HO basis

yields the wrong asymptoptic behavior of wave functions;

• The HO depends on a number of parameters: the frequency ω0,

the ratio of frequencies in cylindrical or Cartesian coordinates,

the number of shells, the number of states, etc.



Coordinate Space Representation
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In coordinate space, the HFB equations take the form

∫

d3r′

∑

σ′

(

+h(rσ, r′σ′) +∆(rσ, r′σ′)
−∆∗(rσ, r′σ′) −h∗(rσ, r′σ′)

)(

U(E, r′σ′)
V (E, r′σ′)

)

=

(

E + λ 0
0 E − λ

)(

U(E, rσ)
V (E, rσ)

)

(3)

These equations can be solved directly by numerical integration for

each energy E, with the following caveats

• Boundary conditions must be specified for the U and V

components;

• In the general case, the eigenspectrum is both discrete (for

|E| < |λ), and continuous;

• Direct integration techniques for Ordinary Differential Equations

(ODE) must be used (Runge-Kutta, Numerov, etc.)



Pros and Cons of the Coordinate Space Representation
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Better physical accuracy and numerical precision...

• The numerical accuracy of solving the HFB equations in

coordinate space is much higher than basis expansions, which

yields numerically nearly exact results.

• Since equations are solved in a box (typically R ≈ 20 fm), the

decription of the continuum is much better.

... but only affordable in spherical nuclei for local functionals

• Implementations of the HFB equations for local functionals in

spherical symmetry are very fast (a few seconds), but

extensions to axial symmetry are much more expensive (a few

dozens of CPUS for half a day), and 3D codes do not exist;

• Finite-range pseudopotentials (or functionals of the non-local

density) are much more difficult to handle: not yet done.



Benchmarking Basis Expansion Against Direct Integration

Computational Nuclear Structure 8

 10  20  30  40  50  60

Number of Oscillator Shells

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

E
rr
o
r 
(M

e
V
)

0.00.10.20.30.40.5

Mesh Size [fm]

Figure 1: Convergence of a HF calculation in 208Pb with a Skyrme

functional as a function of the number of HO shells (black dots) and

mesh size (red square).



Public DFT Solvers (1/3)
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In spherical symmetry, 5 solvers are available in CPC:

• HOSPHE – Uses a HO expansion to solve the HFB equations;

implements Skyrme functionals and general EDF with up to 6th

order derivatives couplings; pairing forces are simple

density-dependent delta (DD) forces [1];

• HFBRAD – Uses the direct numerical integration of the HFB

equations in coordinate space; implements only Skyrme

functionals and DD pairing forces [2].

• RMF – Uses finite element analysis (FEA) to solve the

relativistic Hartree equations (meson-echange formulation) [3];

• RHB – Uses FEA to solve the relativistic Hartree-Bogoliubov

equations (meson-echange formulation); the pairing channel is

treated with the Gogny force [3].

• DIRHBS – Solves the RHB equations (covariant DFT with point

coupling model) in a HO basis; pairing include zero- and

finite-range forces (Gogny, momentum separable) [4].



Public DFT Solvers (2/3)
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In axial symmetry, 2 solvers are available:

• HFBTHO – Solves the HFB equations in the cylindrical HO

basis or in the transformed HO basis obtained by applying a

local scale transformation on the HO functions [5]. In its latest

release, it implements general Skyrme functionals, can do

multi-constrained calculations (up to λ = 8 including odd

multipole moments), finite-temperature HFB calculations, etc.

[6]. An experimental version (not yet published) also implements

the density matrix expansion of chiral potentials.

• DIRHBZ - Solves the HFB equations in the cylindrical HO basis;

allows constraints on axial quadrupole moment Q̂20; parity is

conserved; included in the package DIRHB, hence includes the

same features as DIRHBS, in particular with respect to pairing

forces. [4].



Public DFT Solvers (3/3)

Computational Nuclear Structure 11

For non-conserved axial symmetry, 3 solvers are available:

• Ev8 – Uses the imaginary time method to solve the HF+BCS

equations on a lattice of points; In its latest version (under

review), includes general Skyrme functional including those with

tensor forces [?, 7];

• HFODD – The most versatile DFT solver; solves the HF,

HF+BCS, HFB equations in the HO basis for Skyrme forces or

functionals, Gogny and Yukawa forces; breaks all geometrical

symmetries; includes isospin mixing and projection, angular

momentum projection of HF states, multi-constrained

calculations (including constraints on angular momentum),

finite-temperature, etc. Based on a MPI/OpenMP programming

model. [8, 9, 10, 11, 12, 13, 14].

• DIRHBT - Solves the HFB equations in the Cartesian HO basis;

included in the package DIRHB, hence includes the same

features as DIRHBS [4].



Benchmarking DFT Solvers

Computational Nuclear Structure 12

HOSPHE HFBTHO HFODD

Etot [MeV] −2445.930 216 −2445.930 216 −2445.930 215

E
(n)
kin [MeV] 2614.806 852 2614.806 852 2614.806 852

E
(p)
kin [MeV] 1438.160 641 1438.160 641 1438.160 641

ESkyrme [MeV] −6498.897 708 −6498.897 708 −6498.897 706

ESO [MeV] −109.091 691 −109.091 691 −109.091 691

r
(n)
rms [fm] 5.519 846 5.519 846 5.519 846

r
(p)
rms [fm] 5.249 812 5.250 015 5.250 015

Table 1: Benchmark of the three solvers HOSPHE, HFBTHO and

HFODD for a spherical Hartree-Fock calculation in 208Pb with the

SLy5 Skyrme functional in a full spherical basis of Nmax = 16 shells

with oscillator length b = 2.0 fm.



Related Technology
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In addition to the DFT solvers themselves, several codes related to

DFT in one way or another are available

• skyrme rpa – The code solves the spherical HF equations in

coordinate space with a Skyrme force, and uses the results to

solve the RPA equations by matrix diagonalization [15]. The

code is fully self-consistent: the same Skyrme force used for the

mean-field is used for the residual interaction.

• Sky3D – The code solves the time-dependent Hartree-Fock

equations for Skyrme forces. The initial density ρ(t = 0) is

obtained by solving the 3D HF equations in a Cartesian mesh

with no symmetry assumption. Numerical techniques involve

Fast Fourier Transforms to evaluate derivatives [16].



Applications of Nuclear DFT

Solvers



What can you do with... a spherical DFT solver

Computational Nuclear Structure 15

In spherical symmetry, DFT equations can be solved

• very quickly (typically a few seconds);

• nearly exactly in coordinate space.

Spherical DFT solvers are, therefore, very useful to

• Benchmark approximations to the many-body problem, see your

computational projects...

• Study the precision of numerical truncation schemes

Doubly-closed shell nuclei and nuclei along several semi-magic

isotopic lines are spherical

• Study of the isovector channel of the EDF/pseudopotential

• Analysis of low-lying spectrum using (Q)RPA

... but about 95% of all atomic nuclei are deformed already in their

ground-state.



What can you do with... an axially-symmetric DFT solver
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Nearly all nuclei are deformed, and all of those are axially deformed

in their ground-state.

Axially-symmetric DFT solvers based on basis expansions are still

very fast: a few minutes to obtain the HFB solutions for a heavy

nucleus [6].

Applications

• Large-scale static calculations: nuclear binding energies,

separation energies, Q-values, r.m.s. radii, etc.

• Collective rotational bands are built upon static (often, axially-)

deformed DFT solutions: axially-symmetric solvers are key to

nuclear γ spectroscopy

• Recently, new technology (Finite Amplitude Method) allows fast

calculations of the dipole, quadrupole, etc. response functions

in deformed nuclei: giant resonances, β-decay, etc.



Illustration: Mass Table

Computational Nuclear Structure 17

  0  20  40  60  80 100 120 140 160
Neutron Number N

 -6

 -4

 -2

  0

  2

  4

  6

E
th
 -
 E

ex
p
 (
M
e
V
)

UNEDF2

Figure 2: Deviations between calculated and measured nuclear

binding energies with the UNEDF2 parametrization of the Skyrme

EDF [17].



What can you do with... a symmetry-unrestricted DFT solver
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Triaxiality - Nuclei sometimes exhibit static triaxial shapes

• Triaxiality effects lower fission barriers by a couple of MeV;

• Triaxiality is also relevant to understand shape coexistence

around closed-shell nuclei.

Time-odd terms - Remember that half of the Skyrme EDF

depends on densities built from the spin density s. This part of the

EDF vanishes automatically in static ground-states of even-even

nuclei but:

• Time-odd channels are in principle active in odd-even nuclei

(small effect, a few dozens keV on g.s. energies);

• State-of-the-art theory of collective inertia requires time-odd

densities, effect unknown;

• The description of Gamow-Teller transitions, rotational states,

chiral bands, etc., also require time-odd terms.



Illustration: Potential Energy Surface for Fission
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Figure 3: Potential energy surface of 240Pu with the SkM* EDF as a

function of axial quadrupole and axial octupole degrees of freedom.



Optimization of Energy

Functionals



EDF Optimization
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DFT solvers are also the basic tool to determine the parameters of

nuclear EDF.

Optimization Problem - We define a model (=nuclear EDF)

depending on nx parameters x = (x1, . . . , xn). We need to fit these

parameters on a set of nd data points. There are nT different types

of data, nt points per type T . Examples of such data types include:

binding energies, r.m.s. radii, separation energies, etc.

• For non-relativistic and relativistic EDF, we have nx ≈ 10 – 20;

• The number of data points varies from nd ≈ 20 (historical

Skyrme forces) to nd > 2000 (nuclear mass models)

For the model, we build the χ2 function

χ2 =
1

nd − nx

nT
∑

t=1

nt
∑

j=1

(

ytj(x)− dtj

σt

)2

(4)



UNEDF Parametrizations
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The model is the Skyrme EDF; it depends on all the coupling

constants x ≡ Cuu′

t , including two coupling constants for the pairing

functional. References are [18, 19, 17, 20, 21].

The output of the model is obtained by solving the HFB equations

with a DFT solver (here, HFBTHO): ytj ≡ EHFB, or ytj ≡ Rnuc, etc.

Name nT nd Types

UNEDF0 3 108 masses, radii, odd-even staggering

UNEDF1 4 115 masses, radii, odd-even staggering, fis-

sion isomer excitation energies

UNEDF2 5 130 masses, radii, odd-even staggering, fis-

sion isomer excitation energies, spin-

orbit splittings



Computational Cost of EDF Optimization
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Each function evaluation of the χ2 requires 130× 6 = 780 cores

(with OpenMP); 1 multi-threaded HFB calculation takes about 5

minutes on modern CPUs.
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Figure 4: Left: where the data comes from; right: quality of the

optimizer POUNDerS [17].



Using Statistical Methods to Probe the Robustness of EDF

Parametrizations
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Figure 5: Sensitivity of a Skyrme EDF parametrization to specific

experimental input data for the fit [17].



Benchmarking EDF against Ab Initio Calculations

Computational Nuclear Structure 25

4

6

8

10

E
to
t/
N
4
/3
(M
eV
)

0 10 20 30 40 50 60

N

=10MeV

=5MeV

AFDMC
UNEDF0

UNEDF1

UNEDF2

SLy4

SLy4 adj.

Figure 6: Benchmark of recent Skyrme EDF on neutron drops [17].



Uncertainty Quantification
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Next step: take existing EDF parametrizations and try to estimate

the uncertainties of calculations resulting from the fit of EDF

parameters.

Figure 7: Uncertainty quantification for theoretical predictions of

neutron drip lines and fission barriers.
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[15] Gianluca Colò, Ligang Cao, Nguyen Van Giai, and Luigi Capelli. Self-consistent RPA
calculations with skyrme-type interactions: The skyrme rpa program. Comput. Phys. Comm.,
184(1):142, 2013.

[16] J. A. Maruhn, P. -G. Reinhard, P. D. Stevenson, and A. S. Umar. The TDHF code Sky3D.
Comput. Phys. Comm., 185(7):2195, 2014.

[17] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck,
S. M. Wild, D. Davesne, J. Erler, and A. Pastore. Nuclear energy density optimization: Shell
structure. Phys. Rev. C, 89(5):054314, 2014.
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