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We show how to derive the energy density from the central part of the Skyrme
force. Its antisymmetrized form is

ˆ̄v(x1, x2) = t0(1 + x0P̂σ)δ(r1 − r2)(1− P̂xP̂σP̂τ ), (1)

and this operator acts on a two-body state |ab〉 (or alternatively ψa(rσa)ψb(rσb)).

1 Preliminaries

We do not consider proton neutron mixing, i.e., the density matrix reads, in
configuration space

ρac = δτaτcρac = δτaτcρ
(τa)
ac (2)

Recall that the mean-field potential Γ reads

Γac =
∑
bd

v̄abcdρdb =
∑
τbτd

∑
bd

v̄abcdρ
(τdτb)
db =

∑
τb

∑
bd

v̄abcdρ
(τb)
db , (3)

and the potential energy will be

Eint =
∑
ac

Γacρca =
∑
τaτc

∑
ac

Γacρ
(τcτa)
ca =

∑
τa

∑
ac

Γacρ
(τa)
ca , (4)

Let’s have a look at the action of P̂τ on the state |cd〉. The contribution of this
term to the HF potential will be

Γ ∝
∑
τbτd

∑
bd

〈ab|v̂P̂τ |cd〉ρ(τdτb)db ∝
∑
τbτd

∑
bd

〈ab|v̂|cτddτc〉ρ(τdτb)db (5)
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The last equality implies τd = τb = τc. Hence the action of isospin exchange
operator reduces to a δτcτd . Also, the space-exchange operator commutes with
the Dirac delta function, and can be replaced by 1.

2 Coordinate Space Representation

Introducing the resolution of the identity, we find in general

vabcd = (ab|v̂|cd) = (ab|x1x2)(x1x2|v̂|x′1x′2)(x′1x′2|cd) (6)

with x ≡ (r, σ). For our spatially-local Skyrme potential, this gives

vabcd =

∫
d3r1

∫
d3r2

∑
σaσbσcσd

ψ∗a(r1σa)ψ
∗
b (r2σb)(σaσb|v̂(x1, x2)|σcσd)ψc(r1σc)ψd(r2σd) (7)

Hence, the HF potential becomes

Γ(τa)
ac =

∑
τb

∫
d3r1

∫
d3r2 δ(r1 − r2)

∑
bd

ρ
(τb)
db

∑
σaσbσcσd

ψ∗a(r1σa)ψ
∗
b (r2σb)

〈σaσb|t0(1 + x0P̂σ)(1− P̂σδτbτd)|σcσd〉ψc(r1σc)ψd(r2σd). (8)

Let us replace the spin-exchange operator by its expression

P̂σ =
1

2
(1 + σ1 · σ2) . (9)

We find

Γ(τa)
ac =

∑
σaσc

∑
τb

∫
d3r1

∫
d3r2 δ(r1 − r2)

∑
σbσd

∑
bd

ρ
(τb)
db ψ

∗
a(r1σa)ψ

∗
b (r2σb)

〈σaσb|t0
[(

1 +
1

2
x0

)
−
(
x0 +

1

2

)
δτcτd

]
+

(
1

2
x0 − δτcτd

)
σ1 · σ2|σcσd〉

× ψc(r1σc)ψd(r2σd). (10)
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3 The Spin-independent Component

We start by working out the part that does not depend on the Pauli matrices.
It gives the following contribution to the mean-field,

Γ(τa)
ac =

∑
σaσc

∑
τb

∫
d3r1

∫
d3r2 δ(r1 − r2)

∑
σbσd

∑
bd

ρ
(τb)
db ψ

∗
a(r1σa)ψ

∗
b (r2σb)

× 〈σaσb|t0
[(

1 +
1

2
x0

)
−
(
x0 +

1

2

)
δτcτd

]
|σcσd〉ψc(r1σc)ψd(r2σd). (11)

The δ function allows us to simplify the double integral by eliminating one of
the spatial dimensions. Moreover, since the spin-functions are orthonormal, we
must have: σa = σc (particle 1) and: σb = σd (particle 2). We therefore obtain

Γ(τa)
ac = δσaσc

∑
σaσc

∑
τb

∫
d3r ψ∗a(rσa)ψc(rσc)

∑
σb

δσbσd
∑
bd

ρ
(τb)
db ψ

∗
b (rσb)ψd(rσd)

× t0
[(

1 +
1

2
x0

)
−
(
x0 +

1

2

)
δτcτd

]
, (12)

In the summations over indices b and d, we recognize the local density∑
σb

δσbσd
∑
bd

ρ
(τb)
db ψ

∗
b (rσb)ψd(rσd) =

∑
σb

δσbσdρ
(τb)(rσb, rσd) = ρ(τb)(r). (13)

Therefore,

Γ(τa)
ac = δσaσc

∑
σaσc

∑
τb

∫
d3r ψ∗a(rσa)ψc(rσc)ρ

(τb)(r)

× t0
[(

1 +
1

2
x0

)
−
(
x0 +

1

2

)
δτcτd

]
(14)

The total energy is given by

E
(1)
0 =

1

2

∑
τa

∑
ac

Γ(τa)
ac ρ

(τa)
ca . (15)

Following the exact same reasoning, it is straightforward to find that it reads

E =
1

2

∑
τaτb

∫
d3r ρ(τa)(r)ρ(τb)(r)t0

[(
1 +

1

2
x0

)
−
(
x0 +

1

2

)
δτaτb

]
. (16)
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We then work out explicitely the summations over the isospins τa and τb. Each of
these indices run from −1/2 to +1/2, with τ = −1/2 corresponding to protons,
and τ = +1/2 to neutrons. We find immediately

E =

∫
d3rH(r) (17)

with

H(r) =
1

2
t0

(
1 +

1

2
x0

)
ρ2(r)− 1

2
t0

(
x0 +

1

2

)
[ρ2n(r) + ρ2p(r)]. (18)

4 The Spin-dependent Component

The spin-dependent component of the central term gives the following contri-
bution to the mean-field,

Γ(τa)
ac =

∑
σaσc

∑
τb

∫
d3r1

∫
d3r2 δ(r1 − r2)

∑
σbσd

∑
bd

ρ
(τb)
db ψ

∗
a(r1σa)ψ

∗
b (r2σb)

× 〈σaσb|t0
[

1

2
x0 − δτcτd

](∑
µ

σ̂(1)
µ · σ̂(2)

µ

)
|σcσd〉ψc(r1σc)ψd(r2σd). (19)

Again, the δ factor allows us to simplify integration. This leads to

Γ(τa)
ac =

∑
σaσc

∑
τb

∫
d3r

∑
µ

(
ψ∗a(rσa)ψc(rσc)〈σa|σ̂(1)

µ |σc〉
)

×

(
t0

[
1

2
x0 − δτcτd

]∑
σbσd

∑
bd

ρ
(τb)
db ψ

∗
b (rσb)ψd(rσd)〈σb|σ̂(2)

µ |σd〉

)
. (20)

Introducing the spin density s = (sx, sy, sz),

sµ(r, r′) =
∑
σσ′

ρ(rσ, r′σ′)〈σ′|σ̂µ|σ〉 (21)

we obtain, after reordering,

Γ(τa)
ac =

∑
σaσc

∑
τb

∫
d3r

∑
µ

(
ψ∗a(rσa)ψc(rσc)〈σa|σ̂(1)

µ |σc〉
)

× t0
(

1

2
x0 − δτcτd

)
s(τb)µ (r) (22)
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We then proceed similarly to compute the energy density by taking the trace
of Γ

(τa)
ac times the density matrix ρ

(τa)
ca . We find

H(r) =
1

2

∑
µ

∑
τaτb

t0

[
1

2
x0 − δτaτb

]
s(τa)µ (r)s(τb)µ (r). (23)

We get rid of the isospin indices τa and τb following the exact same procedure
as for the spin independent part and find

H(r) =
1

4
t0x0s

2(r)− 1

2
t0[s

2
n (r) + s 2

p (r)]. (24)

The total contribution to the energy density of the central term thus is

H(r) =
1

2
t0

{(
1 +

1

2
x0

)
ρ2(r)−

(
x0 +

1

2

)
[ρ2n(r) + ρ2p(r)]

+
1

2
x0s

2(r)− [s 2
n (r) + s 2

p (r)]

}
. (25)
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