Derivation of the Central Term of the Skyrme Energy Functional

TALENT Team

July 22, 2014

We show how to derive the energy density from the central part of the Skyrme force. Its antisymmetrized form is

$$\hat{v}(x_1, x_2) = t_0 (1 + x_0 \hat{P}_{\sigma}) \delta(\boldsymbol{r}_1 - \boldsymbol{r}_2) (1 - \hat{P}_x \hat{P}_{\sigma} \hat{P}_{\tau}), \qquad (1)$$

and this operator acts on a two-body state $|ab\rangle$ (or alternatively $\psi_a(\mathbf{r}\sigma_a)\psi_b(\mathbf{r}\sigma_b)$).

1 Preliminaries

We do not consider proton neutron mixing, i.e., the density matrix reads, in configuration space

$$\rho_{ac} = \delta_{\tau_a \tau_c} \rho_{ac} = \delta_{\tau_a \tau_c} \rho_{ac}^{(\tau_a)} \tag{2}$$

Recall that the mean-field potential Γ reads

$$\Gamma_{ac} = \sum_{bd} \bar{v}_{abcd} \rho_{db} = \sum_{\tau_b \tau_d} \sum_{bd} \bar{v}_{abcd} \rho_{db}^{(\tau_d \tau_b)} = \sum_{\tau_b} \sum_{bd} \bar{v}_{abcd} \rho_{db}^{(\tau_b)}, \tag{3}$$

and the potential energy will be

$$E_{\rm int} = \sum_{ac} \Gamma_{ac} \rho_{ca} = \sum_{\tau_a \tau_c} \sum_{ac} \Gamma_{ac} \rho_{ca}^{(\tau_c \tau_a)} = \sum_{\tau_a} \sum_{ac} \Gamma_{ac} \rho_{ca}^{(\tau_a)}, \tag{4}$$

Let's have a look at the action of \hat{P}_{τ} on the state $|cd\rangle$. The contribution of this term to the HF potential will be

$$\Gamma \propto \sum_{\tau_b \tau_d} \sum_{bd} \langle ab | \hat{v} \hat{P}_\tau | cd \rangle \rho_{db}^{(\tau_d \tau_b)} \propto \sum_{\tau_b \tau_d} \sum_{bd} \langle ab | \hat{v} | c^{\tau_d} d^{\tau_c} \rangle \rho_{db}^{(\tau_d \tau_b)}$$
(5)

The last equality implies $\tau_d = \tau_b = \tau_c$. Hence the action of isospin exchange operator reduces to a $\delta_{\tau_c \tau_d}$. Also, the space-exchange operator commutes with the Dirac delta function, and can be replaced by 1.

2 Coordinate Space Representation

Introducing the resolution of the identity, we find in general

$$v_{abcd} = (ab|\hat{v}|cd) = (ab|x_1x_2)(x_1x_2|\hat{v}|x_1'x_2')(x_1'x_2'|cd)$$
(6)

with $x \equiv (\mathbf{r}, \sigma)$. For our spatially-local Skyrme potential, this gives

$$v_{abcd} = \int d^3 \boldsymbol{r}_1 \int d^3 \boldsymbol{r}_2 \sum_{\sigma_a \sigma_b \sigma_c \sigma_d} \psi_a^*(\boldsymbol{r}_1 \sigma_a) \psi_b^*(\boldsymbol{r}_2 \sigma_b)(\sigma_a \sigma_b | \hat{v}(x_1, x_2) | \sigma_c \sigma_d) \psi_c(\boldsymbol{r}_1 \sigma_c) \psi_d(\boldsymbol{r}_2 \sigma_d) \quad (7)$$

Hence, the HF potential becomes

$$\Gamma_{ac}^{(\tau_a)} = \sum_{\tau_b} \int d^3 \boldsymbol{r}_1 \int d^3 \boldsymbol{r}_2 \,\,\delta(\boldsymbol{r}_1 - \boldsymbol{r}_2) \sum_{bd} \rho_{db}^{(\tau_b)} \sum_{\sigma_a \sigma_b \sigma_c \sigma_d} \psi_a^*(\boldsymbol{r}_1 \sigma_a) \psi_b^*(\boldsymbol{r}_2 \sigma_b) \langle \sigma_a \sigma_b | t_0 (1 + x_0 \hat{P}_\sigma) (1 - \hat{P}_\sigma \delta_{\tau_b \tau_d}) | \sigma_c \sigma_d \rangle \psi_c(\boldsymbol{r}_1 \sigma_c) \psi_d(\boldsymbol{r}_2 \sigma_d). \tag{8}$$

Let us replace the spin-exchange operator by its expression

$$\hat{P}_{\sigma} = \frac{1}{2} \left(1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right).$$
(9)

We find

$$\Gamma_{ac}^{(\tau_{a})} = \sum_{\sigma_{a}\sigma_{c}} \sum_{\tau_{b}} \int d^{3}\boldsymbol{r}_{1} \int d^{3}\boldsymbol{r}_{2} \,\,\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2}) \sum_{\sigma_{b}\sigma_{d}} \sum_{bd} \rho_{db}^{(\tau_{b})} \psi_{a}^{*}(\boldsymbol{r}_{1}\sigma_{a}) \psi_{b}^{*}(\boldsymbol{r}_{2}\sigma_{b})$$

$$\langle \sigma_{a}\sigma_{b}|t_{0} \left[\left(1 + \frac{1}{2}x_{0}\right) - \left(x_{0} + \frac{1}{2}\right) \delta_{\tau_{c}\tau_{d}} \right] + \left(\frac{1}{2}x_{0} - \delta_{\tau_{c}\tau_{d}}\right) \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}|\sigma_{c}\sigma_{d}\rangle$$

$$\times \psi_{c}(\boldsymbol{r}_{1}\sigma_{c})\psi_{d}(\boldsymbol{r}_{2}\sigma_{d}). \quad (10)$$

3 The Spin-independent Component

We start by working out the part that does not depend on the Pauli matrices. It gives the following contribution to the mean-field,

$$\Gamma_{ac}^{(\tau_{a})} = \sum_{\sigma_{a}\sigma_{c}} \sum_{\tau_{b}} \int d^{3}\boldsymbol{r}_{1} \int d^{3}\boldsymbol{r}_{2} \,\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2}) \sum_{\sigma_{b}\sigma_{d}} \sum_{bd} \rho_{db}^{(\tau_{b})} \psi_{a}^{*}(\boldsymbol{r}_{1}\sigma_{a}) \psi_{b}^{*}(\boldsymbol{r}_{2}\sigma_{b}) \\ \times \langle \sigma_{a}\sigma_{b} | t_{0} \left[\left(1 + \frac{1}{2}x_{0} \right) - \left(x_{0} + \frac{1}{2} \right) \delta_{\tau_{c}\tau_{d}} \right] | \sigma_{c}\sigma_{d} \rangle \psi_{c}(\boldsymbol{r}_{1}\sigma_{c}) \psi_{d}(\boldsymbol{r}_{2}\sigma_{d}).$$
(11)

The δ function allows us to simplify the double integral by eliminating one of the spatial dimensions. Moreover, since the spin-functions are orthonormal, we must have: $\sigma_a = \sigma_c$ (particle 1) and: $\sigma_b = \sigma_d$ (particle 2). We therefore obtain

$$\Gamma_{ac}^{(\tau_{a})} = \delta_{\sigma_{a}\sigma_{c}} \sum_{\sigma_{b}} \int d^{3}\boldsymbol{r} \ \psi_{a}^{*}(\boldsymbol{r}\sigma_{a})\psi_{c}(\boldsymbol{r}\sigma_{c}) \sum_{\sigma_{b}} \delta_{\sigma_{b}\sigma_{d}} \sum_{bd} \rho_{db}^{(\tau_{b})}\psi_{b}^{*}(\boldsymbol{r}\sigma_{b})\psi_{d}(\boldsymbol{r}\sigma_{d}) \\ \times t_{0} \left[\left(1 + \frac{1}{2}x_{0}\right) - \left(x_{0} + \frac{1}{2}\right)\delta_{\tau_{c}\tau_{d}} \right], \quad (12)$$

In the summations over indices b and d, we recognize the local density

$$\sum_{\sigma_b} \delta_{\sigma_b \sigma_d} \sum_{bd} \rho_{db}^{(\tau_b)} \psi_b^*(\boldsymbol{r}\sigma_b) \psi_d(\boldsymbol{r}\sigma_d) = \sum_{\sigma_b} \delta_{\sigma_b \sigma_d} \rho^{(\tau_b)}(\boldsymbol{r}\sigma_b, \boldsymbol{r}\sigma_d) = \rho^{(\tau_b)}(\boldsymbol{r}).$$
(13)

Therefore,

$$\Gamma_{ac}^{(\tau_{a})} = \delta_{\sigma_{a}\sigma_{c}} \sum_{\sigma_{a}\sigma_{c}} \sum_{\tau_{b}} \int d^{3}\boldsymbol{r} \ \psi_{a}^{*}(\boldsymbol{r}\sigma_{a})\psi_{c}(\boldsymbol{r}\sigma_{c})\rho^{(\tau_{b})}(\boldsymbol{r}) \\ \times t_{0} \left[\left(1 + \frac{1}{2}x_{0}\right) - \left(x_{0} + \frac{1}{2}\right)\delta_{\tau_{c}\tau_{d}} \right]$$
(14)

The total energy is given by

$$E_0^{(1)} = \frac{1}{2} \sum_{\tau_a} \sum_{ac} \Gamma_{ac}^{(\tau_a)} \rho_{ca}^{(\tau_a)}.$$
 (15)

Following the exact same reasoning, it is straightforward to find that it reads

$$E = \frac{1}{2} \sum_{\tau_a \tau_b} \int d^3 \boldsymbol{r} \; \rho^{(\tau_a)}(\boldsymbol{r}) \rho^{(\tau_b)}(\boldsymbol{r}) t_0 \left[\left(1 + \frac{1}{2} x_0 \right) - \left(x_0 + \frac{1}{2} \right) \delta_{\tau_a \tau_b} \right]. \tag{16}$$

We then work out explicitly the summations over the isospins τ_a and τ_b . Each of these indices run from -1/2 to +1/2, with $\tau = -1/2$ corresponding to protons, and $\tau = +1/2$ to neutrons. We find immediately

$$E = \int d^3 \boldsymbol{r} \mathcal{H}(\boldsymbol{r}) \tag{17}$$

with

$$\mathcal{H}(\boldsymbol{r}) = \frac{1}{2} t_0 \left(1 + \frac{1}{2} x_0 \right) \rho^2(\boldsymbol{r}) - \frac{1}{2} t_0 \left(x_0 + \frac{1}{2} \right) \left[\rho_n^2(\boldsymbol{r}) + \rho_p^2(\boldsymbol{r}) \right].$$
(18)

4 The Spin-dependent Component

The spin-dependent component of the central term gives the following contribution to the mean-field,

$$\Gamma_{ac}^{(\tau_{a})} = \sum_{\sigma_{a}\sigma_{c}} \sum_{\tau_{b}} \int d^{3}\boldsymbol{r}_{1} \int d^{3}\boldsymbol{r}_{2} \,\,\delta(\boldsymbol{r}_{1} - \boldsymbol{r}_{2}) \sum_{\sigma_{b}\sigma_{d}} \sum_{bd} \rho_{db}^{(\tau_{b})} \psi_{a}^{*}(\boldsymbol{r}_{1}\sigma_{a}) \psi_{b}^{*}(\boldsymbol{r}_{2}\sigma_{b}) \\ \times \langle \sigma_{a}\sigma_{b} | t_{0} \left[\frac{1}{2} x_{0} - \delta_{\tau_{c}\tau_{d}} \right] \left(\sum_{\mu} \hat{\sigma}_{\mu}^{(1)} \cdot \hat{\sigma}_{\mu}^{(2)} \right) | \sigma_{c}\sigma_{d} \rangle \psi_{c}(\boldsymbol{r}_{1}\sigma_{c}) \psi_{d}(\boldsymbol{r}_{2}\sigma_{d}).$$
(19)

Again, the δ factor allows us to simplify integration. This leads to

$$\Gamma_{ac}^{(\tau_{a})} = \sum_{\sigma_{a}\sigma_{c}} \sum_{\tau_{b}} \int d^{3}\boldsymbol{r} \sum_{\mu} \left(\psi_{a}^{*}(\boldsymbol{r}\sigma_{a})\psi_{c}(\boldsymbol{r}\sigma_{c})\langle\sigma_{a}|\hat{\sigma}_{\mu}^{(1)}|\sigma_{c}\rangle \right) \\ \times \left(t_{0} \left[\frac{1}{2}x_{0} - \delta_{\tau_{c}\tau_{d}} \right] \sum_{\sigma_{b}\sigma_{d}} \sum_{bd} \rho_{db}^{(\tau_{b})}\psi_{b}^{*}(\boldsymbol{r}\sigma_{b})\psi_{d}(\boldsymbol{r}\sigma_{d})\langle\sigma_{b}|\hat{\sigma}_{\mu}^{(2)}|\sigma_{d}\rangle \right).$$
(20)

Introducing the spin density $\boldsymbol{s} = (s_x, s_y, s_z),$

$$s_{\mu}(\boldsymbol{r},\boldsymbol{r}') = \sum_{\sigma\sigma'} \rho(\boldsymbol{r}\sigma,\boldsymbol{r}'\sigma') \langle \sigma' | \hat{\sigma}_{\mu} | \sigma \rangle$$
(21)

we obtain, after reordering,

$$\Gamma_{ac}^{(\tau_a)} = \sum_{\sigma_a \sigma_c} \sum_{\tau_b} \int d^3 \boldsymbol{r} \sum_{\mu} \left(\psi_a^*(\boldsymbol{r}\sigma_a) \psi_c(\boldsymbol{r}\sigma_c) \langle \sigma_a | \hat{\sigma}_{\mu}^{(1)} | \sigma_c \rangle \right) \\ \times t_0 \left(\frac{1}{2} x_0 - \delta_{\tau_c \tau_d} \right) s_{\mu}^{(\tau_b)}(\boldsymbol{r}) \quad (22)$$

We then proceed similarly to compute the energy density by taking the trace of $\Gamma_{ac}^{(\tau_a)}$ times the density matrix $\rho_{ca}^{(\tau_a)}$. We find

$$\mathcal{H}(\boldsymbol{r}) = \frac{1}{2} \sum_{\mu} \sum_{\tau_a \tau_b} t_0 \left[\frac{1}{2} x_0 - \delta_{\tau_a \tau_b} \right] s_{\mu}^{(\tau_a)}(\boldsymbol{r}) s_{\mu}^{(\tau_b)}(\boldsymbol{r}).$$
(23)

We get rid of the isospin indices τ_a and τ_b following the exact same procedure as for the spin independent part and find

$$\mathcal{H}(\boldsymbol{r}) = \frac{1}{4} t_0 x_0 \boldsymbol{s}^2(\boldsymbol{r}) - \frac{1}{2} t_0 [\boldsymbol{s}_n^2(\boldsymbol{r}) + \boldsymbol{s}_p^2(\boldsymbol{r})].$$
(24)

The total contribution to the energy density of the central term thus is

$$\mathcal{H}(\boldsymbol{r}) = \frac{1}{2} t_0 \left\{ \left(1 + \frac{1}{2} x_0 \right) \rho^2(\boldsymbol{r}) - \left(x_0 + \frac{1}{2} \right) \left[\rho_n^2(\boldsymbol{r}) + \rho_p^2(\boldsymbol{r}) \right] + \frac{1}{2} x_0 \boldsymbol{s}^2(\boldsymbol{r}) - \left[\boldsymbol{s}_n^2(\boldsymbol{r}) + \boldsymbol{s}_p^2(\boldsymbol{r}) \right] \right\}.$$
 (25)