1 Simple exercises ($\sim 10-15$ minutes maximum for each)

1. Consider a local, spin-independent potential

$$
\left(\mathbf{x}_{1} \mathbf{x}_{2}|V| \mathbf{x}_{3} \mathbf{x}_{4}\right)=\delta\left(\mathbf{x}_{1}-\mathbf{x}_{3}\right) \delta\left(\mathbf{x}_{2}-\mathbf{x}_{4}\right) V\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)
$$

where we are using the shorthand notation $|\mathbf{x}\rangle \equiv|\mathbf{r}, \sigma\rangle, \delta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \equiv \delta\left(\mathbf{r}_{1}-\right.$ $\left.\mathbf{r}_{2}\right) \delta_{\sigma_{1} \sigma_{2}}$.
(a) Find the second quantized expression \hat{V} in terms of field operators $a^{\dagger}(\mathbf{r}, \sigma)$ and $a(\mathbf{r}, \sigma)$.
(b) Show that this interaction commutes with the number operator.
(c) Represent \hat{V} in terms of the momentum space creation/annihilation operators $c_{\mathbf{k} \sigma}^{\dagger}$ and $c_{\mathbf{k} \sigma}$.
2. Find the second quantized forms for the following operators (shown in "1st quantized" form) for spin $1 / 2$ fermions in terms of the field operators $a^{\dagger}(\mathbf{r}, \sigma)$ and $a(\mathbf{r}, \sigma)$.
(a) The matter density operator

$$
\rho_{N}(\mathbf{r})=\sum_{i=1}^{N} \delta\left(\mathbf{r}-\hat{\mathbf{r}}_{i}\right)
$$

(b) The current density operator

$$
\mathbf{j}_{N}(\mathbf{r})=\frac{1}{2} \sum_{i=1}^{N}\left\{\frac{\mathbf{p}_{i}}{m} \delta\left(\mathbf{r}-\hat{\mathbf{r}}_{i}\right)+\delta\left(\mathbf{r}-\hat{\mathbf{r}}_{i}\right) \frac{\mathbf{p}_{i}}{m}\right\}
$$

(c) The spin density operator

$$
\mathbf{s}_{N}(\mathbf{r})=\sum_{i=1}^{N} \frac{\sigma_{i}}{2} \delta\left(\mathbf{r}-\hat{\mathbf{r}}_{i}\right)
$$

3. Consider the anti-symmetric $j j$-coupled two-nucleon (like particles) states

$$
|a b J M\rangle=N(a b) \sum_{m_{a} m_{b}} C\left(j_{a} m_{a} j_{b} m_{b} \mid J M\right) a_{a m_{a}}^{\dagger} a_{b m_{b}}^{\dagger}|0\rangle
$$

where $C\left(j_{a} m_{a} j_{b} m_{b} \mid J M\right)$ is a Clebsch-Gordon coefficient and $a=\left(n_{a}, l_{a}, j_{a}\right)$, etc. Determine the normalization constant $N(a b)$. Are there any limitations for the allowable values of J ?
4. Same as the previous question, but now work in an isospin representation. I.e., find the normalization of the antisymmetric states $\left|a b J M T M_{T}\right\rangle$ and any restrictions on the values of J and T.

2 More involved exercises

1. Consider an infinite homogenous system of spin $1 / 2$ fermions interacting via a local, spin-independent two-body potential.
(a) Show that the expectation value of the hamiltonian in the non-interacting ground state (i.e., a filled Fermi sea using plane waves in a large box with periodic b.c.'s)

$$
\begin{aligned}
\langle\Phi| H|\Phi\rangle & =2 \sum_{\mathbf{k}}^{k_{F}} \frac{\mathbf{k}^{2}}{2 m}+\frac{1}{2} \sum_{\mathbf{k k}^{\prime}}^{k_{F}} \sum_{\sigma \sigma^{\prime}}\left\langle\mathbf{k} \sigma \mathbf{k}^{\prime} \sigma^{\prime}\right| V\left|\mathbf{k} \sigma \mathbf{k}^{\prime} \sigma^{\prime}\right\rangle \\
& =2 \sum_{\mathbf{k}}^{k_{F}} \frac{\mathbf{k}^{2}}{2 m}+\frac{1}{2} \sum_{\mathbf{k k}^{\prime}}^{k_{F}} 2\left(\mathbf{k} \mathbf{k}^{\prime}|V| \mathbf{k} \mathbf{k}^{\prime}\right)-\left(\mathbf{k} \mathbf{k}^{\prime}|V| \mathbf{k}^{\prime} \mathbf{k}\right)
\end{aligned}
$$

(b) Now pass to the thermodynamic limit $N \rightarrow \infty, V \rightarrow \infty$, where N / V is finite and constant. Simplify your expression as much as possible.
(c) Show that if $V\left(\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|\right)<0$ everywhere and $\int d^{3} r|V|<\infty$, then the system is unstable to collapse. (Hint: consider the energy per particle as a function of k_{F} or density.)

