
Hartree-Fock Calculations of Neutron Drops

Neutron drops are a powerful theoretical laboratory for testing, validating and improving nuclear
structure models. Indeed, all approaches to nuclear structure, from ab initio theory to shell model
to density functional theory are applicable in such systems. We will, therefore, use neutron
drops to analyze some of the techniques that will be presented in this course. The starting
point of nearly all quantum many-body techniques is the Hartree-Fock equations (HF). We will,
therefore, develop a computer program to solve the HF equations by expanding the solutions in
the Harmonic Oscillator basis.

1 The Microscopic Neutron Drop Hamiltonian

The Hamiltonian for a system of N neutron drops confined in a harmonic potential reads
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with ~2/2m = 20.73 fm2, mc2 = 938.90590 MeV, and V̂ij is the two-body, local, finite-range
Minnesota interaction potential
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with P̂σ the spin-exchange operator, and P̂r the space-exchange operator. The spatial
form-factors are

V̂R(r1, r2) = +V0,Re
−κR(r1−r2)2 , (3)

V̂t(r1, r2) = −V0,te−κt(r1−r2)2 , (4)

V̂s(r1, r2) = −V0,se−κs(r1−r2)2 . (5)

The numerical parameters for the range of the Gaussians and the energy scales are listed
in the table below.

Table 1: Parameters defining the Minnesota potential

V Value κ Value

V0,R 200.00 MeV κR 1.487 fm−2

V0,t 178.00 MeV κt 0.639 fm−2

V0,t 91.85 MeV κs 0.465 fm−2
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2 Hartree-Fock Equations in the s-wave Model Space

1. Ground-work

(a) Write the Hamiltonian in second quantization form

(b) We will assume spherical symmetry is conserved. Hence the basis states |a〉 are
eigenstates of the Ĵ2 and Ĵz operators, |a〉 ≡ |na, `a, ja,ma〉.

i. Give the generic expression of the basis states 〈rσ|a〉 ≡ 〈rσ|na, `a, ja,ma〉
using spherical coordinate, radial wave functions, spherical harmonics, spin
functions, etc.

ii. The local density matrix in r-space is denoted by ρ(r, σ), and ρac in config-
uration space. Use the relations between the two representations to obtain
conditions on the labels na, `a, ja,ma and nc, `c, jc,mc.

iii. Does the density matrix depend on the quantum number ma?

2. One-body potential

(a) Write down the matrix elements of the one-body term of the Hamiltonian in the
HO basis.

3. Minnesota Potential

(a) Write the antisymmetrized Minnesota potential in the form V̂ D + V̂ EP̂r

(b) Recall the definition of the Hartree-Fock potential Γac and the total HF potential
energy as a function of the antisymmetrized two-body matrix elements (TBME)
and the density matrix.

(c) Based on the symmetry properties of the density matrix derived in 1.b.ii and
1.b.iii, what TBME do you need to compute?

(d) Now and in the following, we will only take ` = 0 states in our basis. Compute
the (non-antisymmetrized) matrix elements of a generic Gaussian e−(r1−r2)2/µ2

(compute only the matrix elements needed based on the results of the previous
question).

(e) Optional: the radial integrals that you obtained in the previous step can be
computed directly by numerical quadrature, but they may also be simplified
before. We have not checked if it is possible and what is the gain, so we leave it
to you to do it if you are interested...

(f) Compute the direct and exchange matrix elements of the Minnesota interaction.
[Hint: Use the result that

∑
mb
〈naanbb|σ1 ·σ2|ncandb〉 = 0. If you want to have

fun with angular momentum algebra, you can demonstrate this result...]

After these exercises, you should be able to set up the fully Hartree-Fock matrix, and,
therefore, proceed with the iterative HF procedure: initialize the density, compute the HF
field, form the HF matrix, diagonalize it, calculate a new iteration of the density, etc., until
convergence is achieved.
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