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1 Introduction

Neutron drops are a powerful theoretical laboratory for testing, validating and improving
nuclear structure models. Indeed, all approaches to nuclear structure, from ab initio the-
ory to shell model to density functional theory are applicable in such systems. We will,
therefore, use neutron drops to analyze some of the techniques that will be presented in
this course. Since Hartree-Fock theory is the starting point for most of these techniques
(BCS, HFB, RPA, DME, etc.), the first phase of the computational project is to develop
a computer program to solve the HF equations in a given s.p. basis (e.g., HO basis).

Rather than attacking the full neutron drop problem head-on, in the first phase we will
solve a simplified, somewhat contrived version of the problem in order to get a working HF
implementation as quickly as possible. As we will discuss below, a well-designed HF code
is split into two components

1. A Solver class (or Fortran module) that solves the HF equations independent of
the details of the physical system (e.g., neutron drops, nuclei, quantum dots, atoms,
choice of s.p. basis, calculation of two-body matrix elements, etc.).

2. A System class (or Fortran module) that implements/administers all the details
specific to the particular system.

Therefore, in the first phase we will work with a simplified picture of neutron drops in which
only S-wave (l = 0) single particle basis states are considered. This will allow us to focus
on developing the HF solver without getting bogged down with technical details (angular
momentum recoupling, Talmi-Moshinsky transformation brackets, etc.) associated with
generating the input two-body matrix elements for the general case.
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2 Hartree Fock Equations

As shown in the lectures, the Hartree-Fock equations can be written as a matrix diagonal-
ization problem in a given basis |α〉 as∑

β

hαβDβq = εqDαq . (1)

The HF hamiltonian is defined as

hαβ = tαβ + Γαβ , (2)

where the single-particle potential Γαβ is

Γαβ ≡
∑
µν

vανβµρµν , (3)

vαβγδ are antisymmetrized two-body matrix elements (TBMEs),

vαβγδ = 〈αβ|V |γδ〉 = (αβ|V |γδ)− (αβ|V |δγ) , (4)

and the density matrix is given by

ρµν =
N∑
i=1

〈µ|i〉〈i|ν〉 =
N∑
i=1

DµiD
∗
νi . (5)

Note that tαβ denotes the matrix elements of the 1-body part of the starting hamiltonian.
For self-bound nuclei tαβ is the kinetic energy, whereas for neutron drops, tαβ represents
the harmonic oscillator hamiltonian since the system is confined in a harmonic trap. If we
are working in a harmonic oscillator basis with the same ω as the trapping potential, then
tαβ is diagonal.

The HF equations need to be solved iteratively, since hαβ depends on the eigenvectors Dαq

via the density matrix. Therefore, one typically follows the following procedure

1. Start with an initial guess for D(0)
αq and construct ρ(0)νµ , h(0)αβ .

2. Diagonalize h(0)αβ and use the lowest N eigenvectorsD(1)
αi to construct the next iteration

for ρ(1)νµ , h(1)αβ .

3. Continue the process until things don’t change above some threshold from one itera-
tion to the next. For instance, one could iterate until the change in the HF eigenvalues
obeys ∑

p |ε
(n)
p − ε(n−1)

p |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all calculated
single-particle energies and m is the number of single-particle states.
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3 Code Example

An example of a function in C++ which performs the Hartree-Fock calculation is shown
here. In setting up your code you will need to write a function which sets up the single-
particle basis, the matrix elements tαγ of the one-body operator (called h0 in the function
below) and the antisymmetrized TBMEs (called matrixElement below) and the density
matrix elements ρβδ (called densityMatrix below).

void hartreeFock : : run ( ) {
double spPot ;
// −−−−−−−−−−−−−−− Se t t i n g up the HF−hami l tonian us ing D = 1 as

guess , Armadi l lo i s used f o r v e c t o r s
mat h ;
vec E = ze ro s ( nStates , 1) ;
vec ePrev = ze ro s ( nStates , 1) ;
mat D = eye ( nStates , nStates ) ;
vec d i f f ;

// Hartree−Fock loop
int h f I t = 0 ;
while ( h f I t < HFIterat ions ) {

cout << "iteration = " << h f I t << endl ;

h = ze ro s ( nStates , nStates ) ;
for ( int alpha = 0 ; alpha < nStates ; alpha++) {

for ( int gamma = 0 ; gamma < nStates ; gamma++) {
spPot = 0 ;

for ( int beta = 0 ; beta < nStates ; beta++) {
for ( int de l t a = 0 ; de l t a < nStates ; d e l t a++)

{
spPot += dens i tyMatr ix ( beta , de l ta ,D) ∗

matrixElement ( alpha , beta , gamma, de l t a
) ;

}
}

h( alpha , gamma) = h(gamma, alpha ) = h0 ( alpha , gamma) +
spPot ;

}
}
//Computing the HF one−body ene r g i e s
eig_sym (E, D, h) ;
// Transposing the v e c t o r s
D = trans (D) ;
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h f I t++;
// Convergence t e s t
d i f f = E − ePrev ;
i f ( abs ( d i f f .max( ) ) < thre sho ld )

break ;
ePrev = E;

}
double E0 = calcEnergy (D) ;
cout << "Final energy E = " << E0 << " after " << h f I t << "

iterations , error < " << thre sho ld << endl ;
}

4 Project work plan

Each group should start discussing and working on the following tasks.

4.1 Statement of the model problem

To bypass complications associated with calculating the input vαβγδ (angular momentum
coupling, Talmi-Moshinsky transformation, etc.), we start with a simplified version of neu-
tron drops in which our single-particle model space is comprised entirely of S-wave HO
wave functions.

|α〉 = |n, l,m, σ〉 ⇒ |n, 0, 0, σ〉 . (6)

In this restricted model space, we will start with the lightest “closed-shell” neutron drop,
N = 2. (What are the other possible closed-shell drops in this model space?)

4.2 HF Solver

1. Write “pseudo-code” for your HF solver. Feel free to refer to the C++ listing above
for guidance.

2. Translate your pseudo-code into an actual implementation.
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4.3 System class/module

1. Before you tackle the Minnesota potential, with all the complications arising from it’s
spin-dependence and exchange character (i.e., the occurrence of terms like V (r)Pr,
where Pr exchanges the spacial positions of particles 1 and 2.), consider a sim-
ple spin-independent local central potential. Evaluate the expression for the un-
antisymmetrized matrix elements

(n100σ1, n200σ2|V |n300σ3n400σ4) (7)

5 The Microscopic Neutron Drop Hamiltonian

The Hamiltonian for a system of N neutron drops confined in a harmonic potential reads

Ĥ =
N∑
i=1

p̂2i
2m

+
N∑
i=1

1

2
mωr2i +

∑
i<j

V̂ij, (8)

with ~2/2m = 20.73 fm2, mc2 = 938.90590 MeV, and V̂ij is the two-body, local, finite-range
Minnesota interaction potential

V̂ (r1, r2) =

[
V̂R(r1, r2) +

1

2

(
1 + P̂σ

)
V̂t(r1, r2) +

1

2

(
1− P̂σ

)
V̂s(r1, r2)

]
× 1

2

(
1 + P̂r

)
, (9)

with P̂σ the spin-exchange operator, and P̂r the space-exchange operator. The spatial
form-factors are

V̂R(r1, r2) = +V0,Re
−κR(r1−r2)2 , (10)

V̂t(r1, r2) = −V0,te−κt(r1−r2)2 , (11)

V̂s(r1, r2) = −V0,se−κs(r1−r2)2 . (12)

The numerical parameters for the range of the Gaussians and the energy scales are listed
in the table below.

6 Hartree-Fock Equations in the s-wave Model Space

1. Ground-work
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Table 1: Parameters defining the Minnesota potential

V Value κ Value
V0,R 200.00 MeV κR 1.487 fm−2

V0,t 178.00 MeV κt 0.639 fm−2

V0,t 91.85 MeV κs 0.465 fm−2

(a) Write the Hamiltonian in second quantization form

(b) We will assume spherical symmetry is conserved. Hence the basis states |a〉 are
eigenstates of the Ĵ2 and Ĵz operators, |a〉 ≡ |na, `a, ja,ma〉.

i. Give the generic expression of the basis states 〈rσ|a〉 ≡ 〈rσ|na, `a, ja,ma〉
using spherical coordinate, radial wave functions, spherical harmonics, spin
functions, etc.

[〈rσ|a〉 = Rna`a(r)Yjama(θ, ϕ) = Rna`a(r)
∑

ms=±1/2

Y`am`,a
(θ, ϕ)χsams,a ]

ii. The local density matrix in r-space is denoted by ρ(r, σ), and ρac in config-
uration space. Use the relations between the two representations to obtain
conditions on the labels na, `a, ja,ma and nc, `c, jc,mc.

[ρac = ρ`ajama
nanc

δ`a`cδjajcδmamc ]

iii. Does the density matrix depend on the quantum numberma? [No, because
of spherical symmetry]

2. One-body potential

(a) Write down the matrix elements of the one-body term of the Hamiltonian in
the HO basis.

[〈na, `a, ja,ma|ĥ0|nc, `c, jc,mc〉 = ~ω
(

2na + `a +
3

2

)
δnancδ`a`cδjajcδmamc ]

3. Minnesota Potential

(a) Write the antisymmetrized Minnesota potential in the form V̂ D + V̂ EP̂r

[V̂ D = V̂ E =
1

2
(VR + VS)(1− P̂σ)]
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(b) Recall the definition of the Hartree-Fock potential Γac and the total HF po-
tential energy as a function of the antisymmetrized two-body matrix elements
(TBME) and the density matrix.

[Γac =
∑
bd

v̄abcdρdb, E =
1

2

∑
ac

Γacρca]

(c) Based on the symmetry properties of the density matrix derived in 1.b.ii and
1.b.iii, what TBME do you need to compute? [ Only 〈na`ajama, nb`bjbmb|v̂|nc`ajama, nd`bjbmb〉]

(d) Now and in the following, we will only take ` = 0 states in our basis. Compute
the (non-antisymmetrized) matrix elements of a generic Gaussian e−(r1−r2)2/µ2

(compute only the matrix elements needed based on the results of the previous
question).

[(nanb|v̂|ncnd) =

∫
r21dr1

∫
r22dr2 Rna0(r1)Rnb0(r2)e

−(r1−r2)2/µ2Rnc0(r1)Rnd0(r2)]

(e) Compute the direct and exchange matrix elements of the Minnesota interaction.
[Hint: Use the result that

∑
mb
〈naanbb|σ1 ·σ2|ncandb〉 = 0. If you want to have

fun with angular momentum algebra, you can demonstrate this result...]

[〈V̂ D〉 = 〈V̂ E〉 =
1

4
〈VR + VS〉]
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