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1 Introduction

Neutron drops are a powerful theoretical laboratory for testing, validating and improving
nuclear structure models. Indeed, all approaches to nuclear structure, from ab initio the-
ory to shell model to density functional theory are applicable in such systems. We will,
therefore, use neutron drops to analyze some of the techniques that will be presented in
this course. Since Hartree-Fock theory is the starting point for most of these techniques
(BCS, HFB, RPA, DME, etc.), the first phase of the computational project is to develop
a computer program to solve the HF equations in a given s.p. basis (e.g., HO basis).

Rather than attacking the full neutron drop problem head-on, in the first phase we will
solve a simplified, somewhat contrived version of the problem in order to get a working HF
implementation as quickly as possible. As we will discuss below, a well-designed HF code
is split into two components

1. A Solver class (or Fortran module) that solves the HF equations independent of
the details of the physical system (e.g., neutron drops, nuclei, quantum dots, atoms,
choice of s.p. basis, calculation of two-body matrix elements, etc.).

2. A System class (or Fortran module) that implements/administers all the details
specific to the particular system.

In the first phase we will work with a simplified picture of neutron drops in which only
S-wave (l = 0) single particle basis states are considered. This will allow us to focus
on developing the HF solver without getting bogged down with technical details (angular
momentum recoupling, Talmi-Moshinsky transformation brackets, etc.) associated with
generating the input two-body matrix elements for the general case.
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2 Hartree Fock Equations

As shown in the lectures, the Hartree-Fock equations can be written as a matrix diagonal-
ization problem in a given basis |α〉 as∑

β

hαβDβq = εqDαq . (1)

The HF hamiltonian is defined as

hαβ = tαβ + Γαβ , (2)

where the single-particle potential Γαβ is

Γαβ ≡
∑
µν

vανβµρµν , (3)

vαβγδ are antisymmetrized two-body matrix elements (TBMEs),

vαβγδ = 〈αβ|V |γδ〉 = (αβ|V |γδ)− (αβ|V |δγ) , (4)

and the density matrix is given by

ρµν =
N∑
i=1

〈µ|i〉〈i|ν〉 =
N∑
i=1

DµiD
∗
νi . (5)

Note that tαβ denotes the matrix elements of the 1-body part of the starting hamiltonian.
For self-bound nuclei tαβ is the kinetic energy, whereas for neutron drops, tαβ represents
the harmonic oscillator hamiltonian since the system is confined in a harmonic trap. If we
are working in a harmonic oscillator basis with the same ω as the trapping potential, then
tαβ is diagonal.

The HF equations need to be solved iteratively, since hαβ depends on the eigenvectors Dαq

via the density matrix. Therefore, one typically follows the following procedure

1. Start with an initial guess for D(0)
αq and construct ρ(0)νµ , h(0)αβ .

2. Diagonalize h(0)αβ and use the lowest N eigenvectorsD(1)
αi to construct the next iteration

for ρ(1)νµ , h(1)αβ .

3. Continue the process until things don’t change above some threshold from one itera-
tion to the next. For instance, one could iterate until the change in the HF eigenvalues
obeys ∑

p |ε
(n)
p − ε(n−1)p |
m

≤ λ,

where λ is a user prefixed quantity (λ ∼ 10−8 or smaller) and p runs over all calculated
single-particle energies and m is the number of single-particle states.
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3 Code Example

An example of a function in C++ which performs the Hartree-Fock calculation is shown
here. In setting up your code you will need to write a function which sets up the single-
particle basis, the matrix elements tαγ of the one-body operator (called h0 in the function
below) and the antisymmetrized TBMEs (called matrixElement below) and the density
matrix elements ρβδ (called densityMatrix below).

void hartreeFock : : run ( ) {
double spPot ;
// −−−−−−−−−−−−−−− Se t t i n g up the HF−hami l tonian us ing D = 1 as

guess , Armadi l lo i s used f o r v e c t o r s
mat h ;
vec E = ze ro s ( nStates , 1) ;
vec ePrev = ze ro s ( nStates , 1) ;
mat D = eye ( nStates , nStates ) ;
vec d i f f ;

// Hartree−Fock loop
int h f I t = 0 ;
while ( h f I t < HFIterat ions ) {

cout << "iteration = " << h f I t << endl ;

h = ze ro s ( nStates , nStates ) ;
for ( int alpha = 0 ; alpha < nStates ; alpha++) {

for ( int gamma = 0 ; gamma < nStates ; gamma++) {
spPot = 0 ;

for ( int beta = 0 ; beta < nStates ; beta++) {
for ( int de l t a = 0 ; de l t a < nStates ; d e l t a++)

{
spPot += dens i tyMatr ix ( beta , de l ta ,D) ∗

matrixElement ( alpha , beta , gamma, de l t a
) ;

}
}

h( alpha , gamma) = h(gamma, alpha ) = h0 ( alpha , gamma) +
spPot ;

}
}
//Computing the HF one−body ene r g i e s
eig_sym (E, D, h) ;
// Transposing the v e c t o r s
D = trans (D) ;

3



h f I t++;
// Convergence t e s t
d i f f = E − ePrev ;
i f ( abs ( d i f f .max( ) ) < thre sho ld )

break ;
ePrev = E;

}
double E0 = calcEnergy (D) ;
cout << "Final energy E = " << E0 << " after " << h f I t << "

iterations , error < " << thre sho ld << endl ;
}

4 Project work plan

Each group should start discussing and working on the following tasks.

4.1 Statement of the model problem

To bypass complications associated with calculating the input vαβγδ (angular momentum
coupling, Talmi-Moshinsky transformation, etc.), we start with a simplified version of neu-
tron drops in which our single-particle model space is comprised entirely of S-wave HO
wave functions.

|α〉 = |n, l,m, σ〉 ⇒ |n, 0, 0, σ〉 . (6)

In this restricted model space, we will start with the lightest “closed-shell” neutron drop,
N = 2. (What are the other possible closed-shell drops in this model space?)

4.2 HF Solver

1. Write “pseudo-code” for your HF solver. Feel free to refer to the C++ listing above
for guidance.

2. Start translating your pseudo-code into an actual implementation.
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4.3 Groundwork for computing the TBMEs

1. Two-dimensional radial integrals. Before you tackle the Minnesota potential,
with all the complications arising from it’s spin-dependent terms and exchange forces
(i.e., terms like V (r)Pr, where Pr exchanges the spacial positions of particles 1 and
2.), consider a simple spin-independent local potential of gaussian form V (r) =
V0e

−µ|r1−r2|2 . Evaluate the expression for the non-antisymmetrized matrix elements

(n100σ1, n200σ2|V |n300σ3n400σ4) , (7)

and reduce it to a two-dimensional radial integral. One way to see that the angular
integrals are trivial is to perform a multipole expansion of the potential

V (|r1 − r2|) =
∑
l

(2l + 1)Vl(r1, r2)Pl(r̂1 · r̂2) (8)

= 4π
∑
l

l∑
m=−l

Vl(r1, r2)Ylm(r̂1)Y
∗
lm(r̂2) , (9)

where
Vl(r1, r2) =

1

2

∫
d(cos θ)V (|r1 − r2|)Pl(cos θ) . (10)

The angular integrals are now easy; you should find that they pick out the l = 0 term
in the multipole expansion, leaving for the spatial part of the matrix element (check
the numerical pre factor!)

(n10n20|V |n30n4) ∼
∫
r21dr1

∫
r22dr2Rn10(r1)Rn20(r2)Vl=0(r1, r2)Rn30(r1)Rn40(r2),

(11)

where
Vl=0(r1, r2) =

1

2

∫
d(cos θ)V0e

−µ(r21+r22−2r1r2 cos θ) (12)

can be integrated analytically.

It might be possible to simplify the 2-dimensional radial integral further (e.g., reduce
it to a 1-dimensional integral or even integrate it analytically), but we have not
checked this. As it is, the 2-dimensional integral is easily evaluated using Gaussian
quadrature. Therefore, in your System class/module, you should set up a function
that, given some V (r), computes the radial integrals of the form in Eq. 11. We will
outline next how to take care of spin and antisymmetrization.

2. Antisymmetrized matrix elements. The basic inputs to the HF calculation are
the antisymmetrized matrix elements. One straightforward approach is to calculate
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the non-symmetrized matrix elements in Eq. 7 and then explicitly anti-symmetrize
in the ket or bra indices. A more elegant approach is to apply the anti-symmetrizer
to the potential operator,

〈αβ|V |γδ〉 = (αβ|VA12|γδ)
≡ (αβ|V|γδ) (13)

where the anti-symmetrized potential operator is defined as

V = VA12 = V (1− P12) = V (1− PσPr) , (14)

where Pσ and Pr are spin- and space-exchange operators, respectively. Recall that
they are defined as

Pσ|σσ′) = |σ′σ) and Pr|r1r2) = |r2r1) , (15)

with the simple expression for Pσ

Pσ =
1 + σ1 · σ2

2
. (16)

There is no simple expression for Pr, though for our purposes the definition in Eq. 15
is sufficient.

Using the expression for the Minnesota potential given in the Appendix, show that
the anti-symmetrized potential operator takes the form

V = V D + V EPr , (17)

where
V D = V E =

1

2
(VR + VS)(1− Pσ) ≡ v(1− Pσ) , (18)

and v ≡ 1
2
(VR + VS). Finally, show that we have

(n1σ1n2σ2|V D|n3σ3n4σ4) = (δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3)(n1n2|v|n3n4) (19)
(n1σ1n2σ2|V EPr|n3σ3n4σ4) = (δσ1σ3δσ2σ4 − δσ1σ4δσ2σ3)(n1n2|v|n4n3) , (20)

where we’ve suppressed the angular momentum quantum numbers limi since they
are all zero in the present model. The radial integrals (n1n2|v|n3n4) are the same
form as in Eq. 11. The fully antisymmetrized TBMEs are then given by

〈n1σ1n2σ2|V |n3σ3n4σ4〉 = (n1σ1n2σ2|V D|n3σ3n4σ4) + (n1σ1n2σ2|V EPr|n3σ3n4σ4) .

(21)
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5 Structure of the HF equations for the simplified model
space

Once the antisymmetrized TBMEs are in hand, the HF calculation can be done using the
algorithm in the snippet of code provided above. Note, however, that this implementation
doesn’t exploit any symmetries of the problem. One should therefore think of refining the
algorithm to take advantage of all possible symmetries.

1. Starting from the expression for the density matrix elements

〈n1σ1|ρ|n3σ3〉 =
N∑
i=1

〈n1σ1|φi〉〈φi|n3σ3〉 , (22)

where |φi〉 are the HF s.p. orbitals, convince yourself that the density matrix is
diagonal in spin (and independent of it).

2. Now consider the HF single-particle field matrix elements,

〈n2σ2|Γ|n4σ4〉 =
∑
σ1σ3

∑
n1n3

〈n1σ1n2σ2|V |n3σ3n4σ4〉〈n1σ1|ρ|n3σ3〉 . (23)

Using the result that the density matrix is diagonal in spin, convince yourself that
this implies Γ (and hence the HF hamiltonian h) is diagonal in spin (and independent
of it).

3. Because of the previous two simplifications, the HF hamiltonian is block-diagonal in
spin projection. Moreover, the spin up and spin down blocks are the same. Therefore,
one only needs to set up the HF matrix for one spin projection (say, σ)

〈n2σ|h|n4σ〉 = (2n2 + 3/2)~ωδn2n4 +
∑
σ′

∑
n1n3

〈n1σ
′n2σ|V |n3σ

′n4σ〉ρn3n1 . (24)
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A The Microscopic Neutron Drop Hamiltonian

The Hamiltonian for a system of N neutron drops confined in a harmonic potential reads

Ĥ =
N∑
i=1

p̂2
i

2m
+

N∑
i=1

1

2
mωr2

i +
∑
i<j

V̂ij, (25)

with ~2/2m = 20.73 fm2, mc2 = 938.90590 MeV, and V̂ij is the two-body, local, finite-range
Minnesota interaction potential

V̂ (r1, r2) =

[
V̂R(r1, r2) +

1

2

(
1 + P̂σ

)
V̂t(r1, r2) +

1

2

(
1− P̂σ

)
V̂s(r1, r2)

]
× 1

2

(
1 + P̂r

)
, (26)

with P̂σ the spin-exchange operator, and P̂r the space-exchange operator. The spatial
form-factors are

V̂R(r1, r2) = +V0,Re
−κR(r1−r2)2 , (27)

V̂t(r1, r2) = −V0,te−κt(r1−r2)
2

, (28)

V̂s(r1, r2) = −V0,se−κs(r1−r2)
2

. (29)

The numerical parameters for the range of the Gaussians and the energy scales are listed
in the table below.

Table 1: Parameters defining the Minnesota potential

V Value κ Value
V0,R 200.00 MeV κR 1.487 fm−2
V0,t 178.00 MeV κt 0.639 fm−2
V0,t 91.85 MeV κs 0.465 fm−2
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