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The purpose of these notes is to help you computing the matrix elements of the Minnesota
potential in the harmonic oscillator basis.

1 The Spherical Harmonic Oscillator Basis

In this section, we look at the eigenstates of the spherical quantum harmonic oscillator

Ĥ0 =
p2

2m
+

1

2
mωr2 (1)

in the special case of spherical symmetry.

1.1 Eigenstates of the Harmonic Oscillator

General Form - The solutions to the Schrödinger equation for an arbitrary central
potential in spherical symmetry are entirely characterized by the quantum numbers n, `,
j and m; the wave-functions factorize according to

ψn`jm(r, θ, ϕ) = Rn`(r)Y`jm(θ, ϕ) (2)

where Rn`(r) is the radial wave-function and Y`jm(θ, ϕ) are the solid harmonics. The solid
harmonics `, j,m correspond to the tensor product of the spherical harmonics Y`m`

(θ, ϕ)
with the spin functions χsms ,

Y`jm(θ, ϕ) = [Y`m`
(θ, ϕ)⊗ χsms ]jm . (3)

More explicitely, this can be re-written

Y`jm(θ, ϕ) =
∑

ms=±1/2

Cjm
`m`,sms

Y`m`
(θ, ϕ), χsms (4)

where the symbols Cjm
`m`,sms

are the Clebsch-Gordan coefficients.
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Radial Function for the Harmonic Oscillator - In the case where the potential is
the harmonic oscillator, the radial wave function Rn`(r) becomes

Rn`(r) =
An`
b3/2

ξ`e−ξ
2/2L`+1/2

n (ξ2) (5)

where ξ = r/b is a dimensionless variable and b =
√

~/(mω) is the oscillator length (in

fm). The quantities L
`+1/2
n are the generalized Laguerre polynomials. In Eq. (5), An` is a

normalization constant. To determine it, we use the orthonormality of the wave functions
ψn`jm and find

An` =

√
2n+`+2n!

π1/2(2n+ 2`+ 1)!!
(6)

1.2 Generalized Laguerre Polynomials

Recurrence Relation - The generalized Laguerre polynomials verify the following recur-
rence relations (Abramowitz, 22.7.29, 22.7.30)

L(α+1)
n (x) =

1

x

[
(x− n)L(α)

n (x) + (α + n)L
(α)
n−1(x)

]
(7)

L(α−1)
n (x) = L(α)

n (x)− L(α)
n−1(x), (8)

where n is an integer, n ∈ N, and α is a real number. In the following, we will only need
α half-integer. The two relations (7)-(8) are equivalent to

L(α+1)
n (x) =

1

x

[
(x+ α)L(α)

n (x)− (α + n)L(α−1)
n (x)

]
. (9)

The first two polynoms are obtained from

L(−1/2)
n (x) =

(−1)n

n!2n
H2n(

√
x) (10)

L(+1/2)
n (x) =

(−1)n

n!2n+1
H2n+1(

√
x) (11)

where Hn(x) is the Hermite polynomials of order n.

Orthonormality - The generalized Laguerre polynomials verify the following orthonor-
mality condition

∫ +∞

0

e−uuαL(α)
n (u)L

(α)
n′ (u)du = δnn′

Γ(n+ α + 1)

n!
, (12)

for α > −1 and n ∈ N. The Gamma function is, for any integer k (Abramowitz, 6.1.12),

Γ

(
k +

1

2

)
=

1× 3× · · · × (2k − 1)

2k
Γ

(
1

2

)
(13)
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which can be recast into

Γ

(
k +

1

2

)
=

(2k)!

22kp!
Γ

(
1

2

)
(14)

with Γ(1/2) =
√
π.

2 Matrix Elements of the Hamiltonian

We now move to the problem of computing the matrix elements of the Minnesota Hamil-
tonian in the HO basis. Recall that the Hamiltonian reads

Ĥ =
∑
ab

tabc
†
acb +

1

2

∑
abcd

v̄abcdc
†
ac
†
bcdcc, (15)

with the antisymmetrized matrix elements defined by

v̄abcd =

∫
d3r1

∫
d3r2 φ

∗
a(x1)φ

∗
b(x2)V̂

(
1− P̂σP̂r

)
φ∗c(x1)φd(x2) (16)

with a a generic notation for a ≡ (na, `a, ja,ma).

2.1 Matrix of the Kinetic Energy Operator

We give below, without demonstration, the matrix elements of the kinetic energy operator,
i.e., the elements tac. By virtue of the spherical symmetry, we have

tac = 〈a|T̂ |c〉 = 〈na`ajama|T̂ |nc`cjcmc〉 = δ`a`cδjajcδmamc〈na`ajama|T̂ |nc`ajama〉 (17)

In practice, straightforward but somewhat lengthy calculations (involving various tricks
from angular momentum algebra) give

〈na`ajama|T̂ |nc`ajama〉 =
1

2
~ω
(
N +

3

2

)
for na = nc

〈na`ajama|T̂ |nc`ajama〉 =
1

2
~ω
√
nc(nc + `a + 1/2) for na = nc − 1

〈na`ajama|T̂ |nc`ajama〉 =
1

2
~ω
√
na(na + `a + 1/2) for na = nc + 1

In this expression, N = 2n+ ` is the main oscillator number.

2.2 Gauss-Laguerre Quadratures

Presentation - Gauss quadratures are general mathematical methods used to compute
integrals of a function. They are based on the properties of orthogonal polynomials and
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come in several variants. The Gauss-Laguerre quadrature formula reads∫ +∞

0

xαe−xf(x)dx =

Nq∑
n=1

wnf(xn) +RNq , (18)

where the weights wn are given by

wn =
Γ(n+ α + 1)xn

n!(n+ 1)2
[
Lαn+1(xn)

]2 , (19)

the nodes xn are the zeros of the generalized Laguerre polynomials, and RNq is a remainder.
The integer Nq is the order of the quadrature.

The essential property of all types of Gauss quadrature is that the quadrature formula is
exact if f(x) is a polynomial of order p ≤ 2Nq − 1, that is:

∫ +∞

0

xαe−xf(x)dx =

Nq∑
n=1

wnf(xn).

Example - To illustrate how useful quadrature formula can be in practice, consider
the calculation of the radial integral giving the matrix element of some operator Ô(r) in
spherical symmetry. For the sake of simplicity, let us assume that Ô(r) does not contain
differential operators for the time being. We have to compute something like

〈na|Ô(r)|nc〉 ∝
∫ +∞

0

r2dr × e−ξ2/2ξ`aL`a+1/2
na

(ξ2)× Ô(r)× e−ξ2/2ξ`aL`a+1/2
nc

(ξ2), (20)

which can be simplified into something like

〈na|Ô(r)|nc〉 ∝
∫ +∞

0

uαe−uÔ(u)Lαna
(u)Lαnc

(u)du, α = `a + 1/2 (21)

Depending on the properties of the operator Ô(r), we can try to choose the order of the
quadrature Nq such that these integrations are exact.
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