Nuclear Energy Density Functionals

the quantum many-body problem is effectively mapped onto a one-body problem without explicitly involving inter-particle interactions!

the exact density functional is approximated with powers and gradients of groundstate densities and currents.

universal density functionals can be applied to all nuclei throughout the chart of nuclides.

Important for extrapolations to regions far from stability!

Open questions

... accurate and controlled approximations for the nuclear exchangecorrelation energy functional

... microscopic foundation for a universal EDF framework, related to and constrained by low-energy QCD

... correlations related to restoration of broken symmetries and fluctuations of collective coordinates

Kohn-Sham DFT

... uses single-particle orbitals to predict the ground-state density, energy, and related properties \rightarrow useful compromise between accuracy and computational efficiency.

For any interacting system, there exists a local single-particle (Kohn-Sham) potential, such that the exact ground-state density equals the ground-state density of a non-interacting system:

$$n(\mathbf{r}) = n_s(\mathbf{r}) \equiv \sum_i^{occ} |\phi_i(\mathbf{r})|^2$$

The single-particle orbitals are solutions of the Kohn-Sham equations:

$$\left[-\nabla^2/2 + v_s(\mathbf{r})\right]\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$

 \Rightarrow Kohn-Sham potential:

$$v_s[n(\mathbf{r})] = v(\mathbf{r}) + \int d^3 r' \, \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + v_{xc}[n(\mathbf{r})]$$

the exchange-correlation potential is defined by:

$$v_{xc}[n(\mathbf{r})] = \frac{\delta E_{xc}[n]}{\delta n(\mathbf{r})}$$

self-consistent Kohn-Sham DFT: includes correlations and therefore goes beyond the Hartree-Fock. It has the advantage of being a *local scheme*.

The practical usefulness of the Kohn-Sham scheme depends entirely on whether accurate approximations for E_{xc} can be found!

Is there a systematic way to construct density functionals?

Develop Exc from first principles by incorporating known exact constraints.

Empirical approach: a parametric ansatz is optimized by adjusting it to a set of data. Modern approximations for Exc typically combine both strategies.

Exchange-correlation functional \Rightarrow Jacob's ladder of DFT approximations for E_{xc}

Heaven of chemical accuracy unoccupied $\{\Psi_i\}$ generalized RPA Atomization Energies of Hydrocarbon Molecules ε_x hyper-GGA 20 au and/or 0 $abla^2
ho$ meta-GGA -20 -40 GGA $\nabla
ho$ Hartree-Fock -60 DFT Local Spin Density Approximation DFT Generalized Gradient Approximation -80 ρ LDA -100 Н, C_2 C2H2 C_2H_6 C_6H_6 C_2H_4 CH molecule Hartree world

% deviation from experiment

TABLE I. Atomization energies of molecules, in kcal/mol (1 eV = 23.06 kcal/mol). $E_{\rm XC}$ has been evaluated on self-consistent densities at experimental geometries [33]. Nonspherical densities and Kohn-Sham potentials have been used for open-shell atoms [34]. The calculations are performed with a modified version of the CADPAC program [35]. The experimental values for ΔE (with zero point vibration removed) are taken from Ref. [36]. PBE is the simplified GGA proposed here. UHF is unrestricted Hartree-Fock, for comparison.

System	$\Delta E^{ m UHF}$	ΔE^{LSD}	$\Delta E^{ m PW91}$	$\Delta E^{ m PBE}$	$\Delta E^{ m expt}$
H_2	84	113	105	105	109
LiH	33	60	53	52	58
CH_4	328	462	421	420	419
NH ₃	201	337	303	302	297
OH	68	124	110	110	107
H_2O	155	267	235	234	232
HF	97	162	143	142	141
Li_2	3	23	20	19	24
LiF	89	153	137	136	139
Be ₂	-7	13	10	10	3
C_2H_2	294	460	415	415	405
C_2H_4	428	633	573	571	563
HCN	199	361	326	326	312
CO	174	299	269	269	259
N_2	115	267	242	243	229
NO	53	199	171	172	153
O_2	33	175	143	144	121
F_2	-37	78	54	53	39
P_2	36	142	120	120	117
Cl_2	17	81	64	63	58
Mean abs. error	71.2	31.4	8.0	7.9	

John	P.	Perdew.	Kieron	Burke.*	Matthias	Ernzerhof
	- ·	,		<i></i> ,	1,10,000,000	

PHYSICAL REVIEW LETTERS

Mean absolute error of the atomization energies for 20 molecules:

Approximation	Mean abs. error (eV)		
Unrestricted Hartree-Fock	3.1 (underbinding)		
LDA	I.3 (overbinding)		
GGA	0.3 (mostly overbinding)		
Desired "chemical accuracy"	0,05		

 \Rightarrow Multiply by *I0*⁶ and compare with the nuclear case!

The description of nuclear many-body systems must be related to and constrained by low-energy QCD.

A microscopic nuclear energy density functional must include the exchangecorrelation part, starting from the relevant active degrees of freedom at low energy: PIONS & NUCLEONS

An effective field theory of

low-energy in-medium NN interactions can be used to construct approximations to the exact exchangecorrelation functional. In the nuclear medium:

the relevant scale: Fermi momentum

 $k_f \approx 2m_\pi << 4\pi f_\pi$

The density functional involves an expansion in *powers of the Fermi momentum*.

...exchange-correlation functional $E_{xc}[\rho] \Rightarrow$ universal functional of the density:

Ist step: Local Density Approximation

$$E_{xc}^{LDA}[n] = \int d^3r \ n(\mathbf{r}) e_{xc}^{unif}[n(\mathbf{r})]$$

2nd step: second-order gradient correction to the LDA

Calculations for inhomogeneous nuclear matter:

$$\mathcal{E}(\rho, \nabla \rho) = \rho \,\overline{E}(k_f) + (\nabla \rho)^2 \,F_{\nabla}(k_f) + \dots$$

 \Rightarrow generalized gradient approximations (GGAs):

$$E_{xc}^{GGA}[n] = \int d^3r \ f[n(\mathbf{r}), \nabla n(\mathbf{r})]$$

The function f is not unique and, depending on the method of constructing f, very different GGAs can be obtained.

etc.

Infinite nuclear matter cannot determine the density functional on the level of accuracy that is needed for a quantitative description of structure phenomena in finite nuclei.

... start from a favorite microscopic nuclear matter EOS.

... the parameters of the functional are fine-tuned to data of finite nuclei.

Which nuclei? Which data? Correlations between parameters? Accuracy of the fit?