Nuclear Energy Density Functionals

v/ the quantum many-body problem is effectively mapped onto a one-body problem
without explicitly involving inter-particle interactions!
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v/ the exact density functional is approximated with powers and gradients of ground-
state densities and currents.
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v/ universal density functionals can be applied to all nuclei throughout the chart of
nuclides.
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Important for extrapolations to regions far from stability!



Open questions

...accurate and controlled approximations for the nuclear exchange-
correlation energy functional

... microscopic foundation for a universal EDF framework, related
to and constrained by low-energy QCD

... correlations related to restoration of broken symmetries and
fluctuations of collective coordinates



Kohn-Sham DFT [ single-particle orbitals to predict the ground-state density,

energy, and related properties — useful compromise between
accuracy and computational efficiency.

For any interacting system, there exists a local single-particle (Kohn-Sham) potential, such that the
exact ground-state density equals the ground-state density of a non-interacting system:

n(r) = ny(r) = Y 64(0)]°

The single-particle orbitals are solutions of the Kohn-Sham equations:
—V2/2 4 vs(r)] ¢i(r) = eipi(r)

= Kohn-Sham potential:

vs[n(r)] = v(r) + / 37




the exchange-correlation potential is defined by:

Uxe [n(r)] — 55E;(Cf;]

self-consistent Kohn-Sham DFT: includes correlations and therefore goes
beyond the Hartree-Fock. It has the advantage of being a local scheme.

The practical usefulness of the Kohn-Sham scheme depends entirely on whether accurate
approximations for E,. can be found!



Is there a systematic way to construct density functionals?

Develop Exc from first principles by incorporating known exact constraints.

Empirical approach: a parametric ansatz is optimized by adjusting it to a set
of data. Modern approximations for Exc typically combine both strategies.



Exchange-correlation functional = Jacob’s ladder of DFT approximations for Eyc

Heaven of chemical accuracy
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TABLE I. Atomization energies of molecules, in kcal/mol (1 eV = 23.06 kcal/mol). Exc
has been evaluated on self-consistent densities at experimental geometries [33]. Nonspherical
densities and Kohn-Sham potentials have been used for open-shell atoms [34]. The
calculations are performed with a modified version of the CADPAC program [35]. The
experimental values for AE (with zero point vibration removed) are taken from Ref. [36].
PBE 1s the simplified GGA proposed here. UHF 1s unrestricted Hartree-Fock, for comparison.

System AEUHF AELSD AEPW‘)I AEPBE A Eexpt
H, 84 113 105 105 109
LiH 33 60 53 52 58
CH, 328 462 421 420 419
NH 201 337 303 302 297
OH 68 124 110 110 107
H>O 155 267 235 234 232
HF 97 162 143 142 141
Li, 3 23 20 19 24
LiF 89 153 137 136 139
Be, -7 13 10 10 3
C>H>» 294 460 415 415 405
C-,H, 428 633 573 571 563
HCN 199 361 326 326 312
CO 174 299 269 269 259
N, 115 267 242 243 229
NO 53 199 171 172 153
0O, 33 175 143 144 121
F, —37 78 54 53 39
P, 36 142 120 120 117
Cl, 17 81 64 63 58
Mean abs. error 71.2 314 8.0 79
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Mean absolute error of the atomization energies for 20 molecules:

Approximation Mean abs. error (eV)
Unrestricted Hartree-Fock 3.1 (underbinding)
LDA |.3 (overbinding)
GGA 0.3 (mostly overbinding)
Desired “chemical accuracy” 0,05

= Multiply by /0% and compare with the nuclear case!




The description of nuclear many-body systems must be related to and constrained by
low-energy QCD.

A microscopic nuclear energy density functional must include the exchange-
correlation part, starting from the relevant active degrees of freedom at low energy:
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In the nuclear medium:

‘ the relevant scale: kf ~ me << 47Tf7r

Fermi momentum

pion-exchange processes in the presence of a filled Fermi sea:

N N

short-distance dynamics

The density functional involves an expansion in powers of the Fermi
momentum.
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...exchange-correlation functional E,.[p] = universal functional of the density:

BEPA) = [ dr n(e)essfn(e)

2"d step: second-order gradient correction to the LDA

Calculations for inhomogeneous nuclear matter:

E(p,Vp) = pE(ks) + (Vp)* Fy(ky) + ...

= generalized gradient approximations (GGAs):

EGGA[) = / P fln(r), Va(r)

The function f'is not unique and, depending on the method of constructing f, very

different GGAs can be obtained. .
etc.
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Infinite nuclear matter cannot determine the density functional on the level of accuracy
that is needed for a quantitative description of structure phenomena in finite nuclei.

... start from a favorite microscopic nuclear matter EOS.

... the parameters of the functional are fine-tuned to data of finite nuclei.

Which nuclei?
Which data!?
Correlations between parameters?
Accuracy of the fit?



