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Testing the density matrix expansion against ab initio calculations of trapped neutron drops

S. K. Bogner,1 R. J. Furnstahl,2 H. Hergert,1 M. Kortelainen,3 P. Maris,4 M. Stoitsov,3 and J. P. Vary4

1National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University,
East Lansing, Michigan 48824, USA

2Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
3Department of Physics & Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA, and

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
4Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 28 June 2011; published 10 October 2011)

Microscopic input to a universal nuclear energy density functional can be provided through the density matrix
expansion (DME), which has recently been revived and improved. Several DME implementation strategies are
tested for neutron drop systems in harmonic traps by comparing to Hartree-Fock (HF) and ab initio no-core full
configuration (NCFC) calculations with a model interaction (Minnesota potential). The new DME with exact
treatment of Hartree contributions is found to best reproduce HF results and supplementing the functional with
fit Skyrme-like contact terms shows systematic improvement toward the full NCFC results.
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I. INTRODUCTION

Experiments at radioactive ion beam facilities, studies of
astrophysical systems such as neutron stars and supernovae,
and nuclear energy and security needs have motivated multi-
pronged efforts to develop nuclear energy density functionals
(EDFs) with substantially reduced errors and improved predic-
tive power away from stability. While great progress has been
made in extending the reach of ab initio wave function methods
beyond the lightest nuclei [1–4], the EDF approach remains
the most computationally feasible method for a comprehensive
description of medium and heavy nuclei [5]. However, the
ab initio methods are vital tools for reaching the goal
of robust functionals informed by microscopic internucleon
interactions. As part of an ongoing program to achieve this
goal, in this paper we investigate trapped neutron drops with
a model interaction. In particular, EDF calculations using
several density matrix expansion (DME) implementations are
confronted with ab initio no-core full configuration (NCFC)
[6] results.

The comparisons presented here exploit developments
achieved within the Universal Nuclear Energy Density
Functional (UNEDF) SciDAC-2 collaboration [7,8]. The
UNEDF project aims to develop a comprehensive theory of
nuclear structure and reactions utilizing the most advanced
computational resources and algorithms available, including
high-performance computing techniques to scale to petaflop
platforms and beyond [7]. One element of the UNEDF program
involves the direct injection of microscopic physics into novel
energy functionals, with the DME a key tool [9–12]. Another
element has led to efficient density functional theory (DFT)
solvers adapted for the DME [13] and to neutrons in external
traps, which allow accurate and rapid testing of candidate
functionals [14]. A third element is the extensive development
of ab initio methods, including improved computational
efficiencies [15] and extrapolation techniques for the NCFC [6]
that allow exact calculations (with error bars) of the same
neutron drop systems to which the functionals are applied.

Neutron drops are a powerful theoretical laboratory for
improving existing nuclear energy functionals. Microscopic
input to EDFs is particularly needed for neutron-rich nu-
clei, where there are fewer constraints from experiment.
The properties of uniform neutron matter have been used
in the past as a constraint on phenomenological functionals
(e.g., see Refs. [16,17]), but computational advances now
allow accurate microscopic many-body calculations of inho-
mogeneous neutron drops in external potentials using quantum
Monte Carlo or NCFC methods [18,19]. These calculations can
be used to identify deficiencies in existing functionals (e.g., of
the Skyrme type as in Ref. [18]), to suggest or calibrate new
versions, or simply to provide control data that supplement
experiment for the optimization of functionals.

Neutron drops also provide favorable environments for the
development and testing of nonempirical (i.e., microscopically
based) functionals. The necessity of an external potential (be-
cause the untrapped system is unbound, with positive pressure)
is turned into a virtue by allowing external control over the
environment. Density functional theory, which provides the
theoretical underpinning and computational framework for
building a nuclear EDF, dictates that the same functional
applies for any external potential, which can therefore be
varied to probe and isolate different aspects of the EDF. In
contrast, the treatment of self-bound systems (such as ordinary
nuclei) has much less flexibility. Furthermore, there are serious
complications from symmetry breaking [20], particularly for
the relatively small systems where ab initio methods can also
be applied.

The density matrix expansion was introduced long ago by
Negele and Vautherin, who applied it to G-matrix effective
interactions to derive a Skyrme-like Hartree-Fock (HF) energy
density functional. The DME has been revisited in recent years
with the goal of applications to nuclear interactions sufficiently
soft that many-body perturbation theory (MBPT) for nuclei
is a quantitative framework. There are new formal DME
developments, as well as new formulations that include hybrids
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between purely ab initio and phenomenological functionals.
These must be tested and validated (or discarded if found to be
inadequate); in general, due to the complexity of the various
DME procedures and the involved density dependence they
generate for the subsequent functional, we have no a priori
guidance for the accuracy.

In this paper, we isolate the DME issues by using a sim-
plified model interaction, the two-body Minnesota potential.
Focusing on neutron drops is also advantageous because
the self-consistent solution of a self-bound system magnifies
approximation errors to the extent that it is difficult to analyze
them. Of course, the main drawback of using neutron drops is
the absence of control by experimental data. In our case this is
not so relevant as we use a simple model interaction sufficient
for conducting our basic tests of these methods. Our results
here provide a foundation for testing more realistic interactions
and improved functionals (e.g., that include pairing), and for
extensions to self-bound nuclei.

In Sec. II, we briefly review the methods and inputs used.
Results for the Minnesota potential are given in Sec. III for
representative trap potentials and two closed-shell neutron
drop systems. We summarize our observations and discuss
the next steps to take in Sec. IV.

II. BACKGROUND

The present calculations combine ingredients from several
parts of the UNEDF project. The technical details are described
in full elsewhere, so we merely review the essential features.

A. DME

The density matrix expansion introduced by Negele and
Vautherin [21,22] provides a route to an EDF based on mi-
croscopic nuclear interactions through a quasilocal expansion
of the energy in terms of various densities: ρ(R), τ (R),
∇2ρ(R), and so on. Kohn-Sham single-particle potentials are
immediately obtained from simple functional derivatives with
respect to these densities. The DME originated as an expansion
of the Brueckner-Hartree-Fock energy constructed using the
nucleon-nucleon G matrix [21,22], which was treated in a local
(i.e., diagonal in coordinate representation) approximation.

The DME has been reformulated for spin-saturated nuclei
using nonlocal low-momentum interactions in momentum rep-
resentation [9], for which G-matrix summations are not needed
because of the softening of the interaction. When applied to
a Hartree-Fock energy functional, the DME yields an EDF in
the form of a generalized Skyrme functional that is compatible
with existing codes, by replacing Skyrme coefficients with
density-dependent functions. As in the original application, a
key feature of the DME is that it is not a pure short-distance
expansion but includes resummations that treat long-range
interactions correctly in a uniform system.

Extensions of the first calculations from Ref. [9] have
modified the DME formalism from Negele and Vautherin [21],
which provides an extremely poor description of the vector part
of the density matrix [11]. The standard DME is much better
at reproducing the scalar density matrices, but errors are still

sufficiently large that the discrepancy with full finite-range
Hartree-Fock calculations can reach the MeV per particle
level. Gebremariam and collaborators [11] introduced a new
phase-space-averaging (PSA) approach that accounts for the
diffuse Fermi surface [23] and anisotropy [24] of the local
momentum distribution, with no free parameters. The PSA
treatment leads to substantial improvements, particularly for
the vector density matrices, where relative errors in integrated
quantities are reduced by as much as an order of magnitude
across isotope chains [11]. In the present work, we test the
difference between the original Negele-Vautherin (NV) and
the new PSA prescriptions only for scalar parts.

The Fock energy exhibits spatial nonlocalities due to the
convolution of finite-range interaction vertices with nonlocal
density matrices. The DME factorizes the nonlocality of the
one-body density matrix by expanding it into a finite sum of
terms that are separable in relative r ≡ r1 − r2 and center of
mass R ≡ (r1 + r2)/2 coordinates. For example, in notation
introduced in Refs. [11,12], one expands the spin-scalar part
(in both isospin channels) of the one-body density matrix as

ρt (r1, r2) ≈
nmax∑
n=0

�n(kr) Pn(R), (1)

where the functions {Pn(R)} denote various local densities
and their gradients (through second order in the present work)
and �n(kr) denotes the so-called � functions, which depend
on the particular formulation of the DME (here NV or PSA).
The arbitrary momentum k sets the scale for the decay in the
off-diagonal direction. As in Ref. [13], we will take k to be the
local Fermi momentum related to the isoscalar density through

k ≡ kF (R) =
(

3π2

2
ρ0(R)

)1/3

, (2)

although other choices are possible that include additional τ

and �ρ dependencies [25].
It is possible to apply the DME to both Hartree and Fock

energies so that the complete Hartree-Fock energy is mapped
into a local functional. From the earliest DME work, however,
it was found that treating the Hartree contributions exactly
provides a better reproduction of the density fluctuations
and the energy produced from an exact HF calculation
[22,26]. Restricting the DME to the exchange contribution
significantly reduces the self-consistent propagation of errors
[22]. In addition, treating the Hartree contribution exactly
does not complicate the numerical solutions of the resulting
self-consistent equations compared to applying the DME to
both Hartree and Fock terms. Here we will compare several
prescriptions for handling the Hartree contribution, including
a Taylor series expansion [27].

A consistent and systematic extension of the DME proce-
dure beyond the Hartree-Fock level of MBPT has yet to be
formulated. For now, attempts to microscopically construct
a quantitative Skyrme-like EDF use some ad hoc approx-
imations (e.g., using averaged rather than state-dependent
energy denominators) when applying the DME to iterated
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contributions beyond the HF level and/or reintroduce some
phenomenological parameters to be adjusted to data [21,22,
28–30]. Recent work based on chiral NN and NNN effective
field theory interactions motivates an approach to building
upon the DME/HF functional that incorporates important
microscopic physics while exploiting the highly developed
Skyrme EDF technology [11–13].

The structure of the chiral interactions is such that each
coupling in the DME/HF functional is decomposed into
a density-independent coupling constant arising from zero-
range contact interactions and a coupling function of the
density arising from the universal long-range pion exchanges.
This clean separation between long- and short-distance physics
at the HF level suggests a semi-phenomenological approach
where the long-distance couplings [gm

t (R; Vπ )] are kept as is,
and the zero-range constants Cm

t are optimized to finite nuclei
and infinite nuclear matter properties [11,12]. Thus,

g
ρτ
t ≡ g

ρτ
t (R; Vπ ) + C

ρτ
t (Vct), (3)

and so on, so that the DME functional splits into two terms,

E[ρ] = Ect[ρ] + Eπ [ρ], (4)

where the first term Ect[ρ] collects all contributions from the
contact part of the interaction plus higher-order short-range
contributions encoded through the optimization to nuclei and
nuclear matter, while the second term Eπ [ρ] collects the
long-range NN and NNN pion exchange contributions at the
Hartree-Fock level.

Because the contact contributions have essentially the same
structure as those entering empirical Skyrme functionals, a
microscopically guided Skyrme phenomenology has been
suggested in which the contact terms in the DME functional are
released for optimization to finite-density observables [11,12].
This empirical procedure is supported by the observation that
the dominant bulk correlations in nuclei and nuclear matter are
primarily short-ranged in nature, as evidenced by Brueckner-
Hartree-Fock (BHF) calculations where the Brueckner G

matrix “heals” to the free-space interaction at sufficiently large
distances. One can loosely interpret the refit of the Skyrme
constants to data as approximating the short-distance part of
the G matrix with a zero-range expansion through second order
in gradients. In doing so, the constants can capture short-range
correlation energy contributions beyond Hartree-Fock. We will
test this strategy for incorporating BHF correlations from the
Minnesota potential, with the free parameters of the volume
part of the functional fixed to properties of infinite neutron
matter and the free surface parameter adjusted to NCFC results.
We will also consider a direct density-dependent modification
to model BHF correlations.

B. Minnesota potential

All of the calculations reported here use the Minnesota
potential. This is a local NN-only potential that is the sum of
three Gaussians in the radial coordinate rij [31]:

Vij = [
VR + 1

2

(
1 + P σ

ij

)
Vt + 1

2

(
1 − P σ

ij

)
Vs

]
1
2

(
1 + P r

ij

)
, (5)

TABLE I. Parameters defining the Minnesota potential [see
Eqs. (5)–(8)].

Vα Value (MeV) κα Value (fm−2)

V0R 200.0 κR 1.487
V0t 178.0 κt 0.639
V0s 91.85 κs 0.465

where P σ and P r are spin and space exchange operators,
respectively, and

VR = V0Re−κRr2
ij , (6)

Vt = −V0t e
−κt r

2
ij , (7)

Vs = −V0se
−κs r

2
ij . (8)

The parameters defining the Vij are given in Table I. (Note
that we have taken the exchange-mixture parameter u in
Ref. [31] equal to one.) The Minnesota potential reproduces
NN effective range parameters and gives reasonable results
for the binding energies of light nuclei. It is often used as a
semirealistic potential in model calculations.

For our purposes, the important characteristics of this
potential are that it is local, which makes possible the
immediate adaptation of current DME technology (which is
not fully developed for nonlocal potentials), and that it is
moderately soft, so that HF is a reasonable starting point
and convergence is adequate in the NCFC. Because we
plan to use low-momentum interactions in the future, this
softness is consistent rather than a shortcoming of the model.
While the Minnesota potential lacks important features of
realistic interactions, such as tensor forces and three-nucleon
interactions, it provides a convenient, nontrivial test case for
the DME that sets the stage for future tests.

C. EDF solvers

The DME-based functionals described in the last section
and in Ref. [13] have been implemented in the DFT solvers
HFBRAD [32] and HFBTHO [33]. HFBRAD is a very
fast solver for spherical nuclei and density-dependent local
density approximations, while HFBTHO is much slower but
calculates spherical and axially deformed nuclei and can
handle additional gradient corrections. A FORTRAN module
for both solvers has been developed to implement the density-
dependent parts of the EDF from the DME applied to
chiral effective potentials [34]. The module contains all of
the lengthy expressions for the DME couplings and their
functional derivatives with respect to the density matrix,
and for numerically stable approximations. The module also
has the capability to calculate related infinite nuclear matter
properties. We have developed a similar module that can
handle expressions coming from the DME of the Minnesota
potential plus external potentials. This module was linked to
existing DFT solvers to calculate results presented here.
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D. NCFC

To test the DME calculations, we use the ab initio NCFC
approach [6,35] to provide exact results (with errors bars).
The NCFC is closely related to the no-core shell model
(NCSM) [36–39], as both employ a many-body harmonic
oscillator basis that treats all nucleons as spectroscopically
active. The basis space includes all many-body states with
excitation quanta less than or equal to Nmax. A general
feature is the possibility to completely remove spurious
center-of-mass excitations, but the present application with an
external potential does not exploit this capability. Rather, the
center-of-mass motion is part of the physical system. The main
difference between the NCFC and NCSM is that the NCSM
employs an interaction renormalized to the finite many-body
basis, such as the Lee-Suzuki effective interaction.

The NCFC approach involves the extrapolation of a
sequence of finite matrix results with the bare interaction (as
opposed to a Lee-Suzuki effective interaction) to the infinite
basis space limit. This makes it possible to obtain basis-space-
independent results for binding energies and other observables
and to evaluate their numerical uncertainties. The extrapolation
methods are described in Ref. [6]. A recent calculation of 14F
in Ref. [4], made prior to the first experimental measurements,
illustrates the predictive power of the NCFC approach when
coupled with leadership class computer resources. Note that
the present calculations do not exploit the full capabilities
of the codes and computers available to further minimize
theoretical errors, because current error bars are small enough
for the present application.

To solve for ground-state energies, radii, and form factors
of trapped neutron systems, the code MFDn [15,40–42] was
generalized to allow for external potentials. Only spherically
symmetric harmonic oscillator traps are used in the current
investigation, but other shapes and deformed traps are also
directly available.

III. RESULTS

The neutrons are confined by an external single-particle
harmonic potential:

vext(r) = 1
2m
2r2, (9)

with harmonic oscillator parameter h̄
 varied from 5 to
20 MeV. The calculations here use N = 8 and N = 20
neutrons, which form closed shells. In the future we will revisit
this problem with pairing included and consider intermediate
N values. Accurate NCFC results are limited to larger
oscillator parameters because of slow convergence with Nmax

for the Minnesota potential. (Note that quantum Monte Carlo
techniques such as Green’s function Monte Carlo (GFMC) or
Auxiliary field diffusion Monte Carlo (AFDMC) are effective
for smaller h̄
 and could be used for additional comparisons.)
In some cases, extrapolations are not reliable and so only upper
bounds to the total energy are given.

Comparisons among different DME treatments of the
Hartree term are given in Tables II, III, and IV. The full
HF results provide a baseline for comparison of the Negele-
Vautherin (HF/NV) and phase-space-averaging (HF/PSA)

TABLE II. Comparison of DME approximations to HF total
energies for different treatments of the Hartree term, expressed as
deviations from the full Hartree-Fock results �Ei = Ei − EHF in
MeV.

N h̄
 HF/NV HF/PSA

NV NT Exact PSA NT Exact

8 3 0.1 0.2 0.1 0.0 0.1 0.0
8 5 0.4 0.8 0.4 −0.1 0.6 0.2
8 10 2.1 5.1 2.0 −1.7 4.1 0.9
8 15 4.2 12.9 4.6 −7.1 10.8 2.1
8 20 6.0 24.2 7.7 20.9 3.4
20 3 0.5 0.8 0.6 −0.1 0.4 0.2
20 5 1.8 3.4 2.3 −1.0 2.0 0.9
20 10 5.9 18.5 11.0 −14.0 12.0 3.9
20 15 3.8 44.3 22.7 31.6 7.9
20 20 −17.8 80.0 34.8 61.3 12.5

approximations to HF, with variations based on how the
Hartree part of the DME is treated. For each of the two DME
implementations, there are three possibilities: treat Hartree
with the same DME (NV or PSA), use a naive Taylor expansion
(NT), or treat it exactly. We split the total energy into internal
and trap contributions, with

Eint = Etot − Uext (10)

and

Uext = 4π

∫
dr r2vext(r) ρ(r). (11)

Results are presented as deviations from the full HF results
of the total and internal energies and the radii. These results
are for spherical solutions, which were shown to minimize the
energy. That is, by imposing a nonzero quadrupole moment as
a constraint, we found in all cases that the total energy rapidly
increases as the quadrupole moment deviates from zero.

It is evident that the DME with PSA and exact Hartree is
systematically the closest to HF energies and radii. For all
DME approximations, internal energies are generally closer to

TABLE III. Comparison of DME approximations to HF internal
energies for different treatments of the Hartree term, expressed as
deviations from the full Hartree-Fock results �Ei = Ei − EHF in
MeV.

N h̄
 HF/NV HF/PSA

NV NT Exact PSA NT Exact

8 3 0.0 −0.0 0.0 0.1 0.0 0.1
8 5 −0.1 −0.4 −0.1 0.2 −0.3 −0.1
8 10 0.1 −1.0 −0.2 1.3 −1.0 −0.1
8 15 1.1 −1.5 0.3 5.4 −1.8 0.1
8 20 3.2 −1.9 1.1 −2.7 0.5
20 3 −0.2 −0.4 −0.3 0.1 −0.3 −0.1
20 5 −0.3 −1.2 −0.6 1.0 −0.8 −0.2
20 10 3.3 −2.2 0.3 11.9 −2.6 0.2
20 15 16.9 −2.0 4.4 −5.4 1.4
20 20 68.3 −1.2 11.1 −8.7 3.2
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TABLE IV. Comparison of DME approximations to HF rms radii
for different treatments of the Hartree term, expressed as deviations
from the full Hartree-Fock results �ri = ri − rHF in femtometers.

N h̄
 HF/NV HF/PSA

NV NT Exact PSA NT Exact

8 3 0.01 0.02 0.00 −0.02 0.01 −0.01
8 5 0.03 0.07 0.03 −0.01 0.05 0.01
8 10 0.04 0.11 0.04 −0.06 0.09 0.02
8 15 0.03 0.14 0.04 −0.13 0.12 0.02
8 20 0.02 0.16 0.05 0.15 0.02
20 3 0.02 0.05 0.03 −0.02 0.02 0.01
20 5 0.04 0.09 0.06 −0.04 0.06 0.02
20 10 0.02 0.13 0.07 −0.18 0.09 0.02
20 15 −0.04 0.16 0.07 0.13 0.03
20 20 −0.20 0.18 0.05 0.15 0.02

full HF than the total energies. This can be understood because
the internal energy comes mostly from the volume part of the
EDF. DME and full HF agree for infinite (uniform) matter,
so similar results can be expected from this part. However,
one can see that the DME approximations give slightly larger
radii, which implies slightly larger external energies, and so
larger total energies. A possible explanation is that the DME
coupling for the ρ�ρ term may not take into account all the
surface effects.

Some of the DME/PSA entries in Tables II to IV are
missing. In these cases, the calculation failed to converge
because of EDF instabilities [43]. The instabilities occurred
at high values of h̄
 when both the Hartree and Fock terms
were taken from the DME. This could indicate some problems
at high density in the Hartree part of the DME expressions.
These instabilities are not, however, just simply related to
the infinite neutron matter properties and are therefore more
involved [43].

An alternative to the DME for microscopically based EDFs
uses the more completely microscopic but computationally far
more intensive optimized effective potential (OEP) method
[10]. In Ref. [44], the OEP was applied to the same model
problem of the Minnesota potential for neutrons in a trap.
Comparisons made to exact HF results show that the exact
exchange version of OEP is almost indistinguishable from
HF, in contrast to the small but nonnegligible discrepancies
found here. Future comparisons as both methods continue
to be refined will help to gauge the accuracy of DME
approximations and guide the development of corrections.

To test schemes for incorporating correlations beyond HF,
we use BHF calculations of neutron matter, which we expect
to be quite accurate for the Minnesota potential. Two strategies
are considered, following the discussion in Sec. II A.

The first strategy is based on the empirical observation
that the ratio of the neutron matter HF and BHF results is
a rather smooth function of density, which we denote f (kF).
By assuming a rank-one separable expansion of the potential,
V (k, k′), the G matrix would take the form G(k, k′) ∼
V (k, k′)/f (kF) and then taking a simple Gaussian for the
potential form factor and expanding out the integral that

appears in the definition of f (kF), one motivates the form

f = a + bρ1/3 + cρ + dρ5/3 + · · · . (12)

The coefficients a, b, c, and d are determined by a fit.
(Calculations omitting d were also made and yield similar
results except for the densest neutron drops.) This strategy
is implemented in the DFT solvers by evaluating the ρ

dependence in the Fock terms as ρ → ρ(R), which means the
DME/HF couplings simply get scaled by f (ρ). In the exact
Hartree treatment, the prescription ρ → 1/2[ρ(r1) + ρ(r2)] is
used and otherwise ρ(R) is used. This approach is labeled
BHF/PSA (or just BHF) in the subsequent tables and figures
(in which only results based on exact-Hartree, DME/PSA are
given).

The second strategy follows Ref. [13] to incorporate BHF
correlations by adding a contact part to the HF functional for
the Minnesota potential. In general, the contact part Ect[ρ] of
the EDF has the form of the standard Skyrme functional

Hct(r) = h̄2

2m
τ0 + Hct

0 (r) + Hct
1 (r), (13)

where

Hct
t (r) = (

C
ρ2

t0 + C
ρ2

tDρ
γ

0

)
ρ2

t + C
ρτ
t ρt τt + C

ρ�ρ
t ρt�ρt

+C
ρ∇J
t ρt∇Jt + CJ 2

t J 2
t , (14)

TABLE V. Results for calculations of eight neutron drops in
harmonic potentials. All energies are in MeV and the rms radii rrms

are in femtometers. The NCFC results use up to Nmax in square
brackets and parentheses indicate the extrapolation uncertainty in the
last quoted digit(s). The approximations are explained in the text.

Approx. h̄
 Etot Eint Uext rrms

HF 5 71.9 37.6 34.3 3.78
HF/NV 5 72.3 37.5 34.8 3.80
HF/PSA 5 72.1 37.5 34.5 3.78
BHF/PSA 5 68.8 34.9 33.9 3.75
fit/PSA 5 70.0 36.8 33.2 3.71
NCFC [14] 5 < 69.5

HF 10 142.4 69.6 72.8 2.75
HF/NV 10 144.5 69.5 75.0 2.79
HF/PSA 10 143.4 69.6 73.8 2.77
BHF/PSA 10 139.4 66.2 73.2 2.75
fit/PSA 10 138.6 67.3 71.3 2.72
NCFC [16] 10 138.1(6) 66(2) 72(2) 2.73(3)

HF 15 217.4 101.8 115.6 2.31
HF/NV 15 222.1 102.1 120.0 2.35
HF/PSA 15 219.5 101.9 117.6 2.33
BHF/PSA 15 214.8 98.5 116.2 2.31
fit/PSA 15 212.5 98.1 114.4 2.30
NCFC [16] 15 212.7(2) 98.6(4) 114.1(4) 2.293(4)

HF 20 296.4 135.1 161.3 2.04
HF/NV 20 304.1 136.3 167.8 2.09
HF/PSA 20 299.8 135.6 164.2 2.06
BHF/PSA 20 294.1 131.8 162.4 2.05
fit/PSA 20 290.9 130.0 160.9 2.04
NCFC [16] 20 290.8(2) 131.5(3) 159.3(3) 2.032(2)
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TABLE VI. Results for calculations of 20 neutron drops in
harmonic potentials with the same conventions as Table V.

Approx. h̄
 Etot Eint Uext rrms

HF 5 230.4 120.9 109.6 4.26
HF/NV 5 232.8 120.2 112.5 4.32
HF/PSA 5 231.3 120.7 110.6 4.28
BHF/PSA 5 221.3 112.4 108.9 4.25
fit/PSA 5 223.0 117.5 105.5 4.18

HF 10 455.4 224.0 231.5 3.10
HF/NV 10 466.5 224.2 242.2 3.17
HF/PSA 10 459.3 224.1 235.2 3.12
BHF/PSA 10 445.0 215.7 229.3 3.08
fit/PSA 10 441.5 214.8 226.7 3.07
NCFC [8] 10 <452.

HF 15 693.0 328.1 364.9 2.59
HF/NV 15 715.7 332.5 383.2 2.66
HF/PSA 15 700.9 329.5 371.4 2.62
BHF/PSA 15 680.1 318.2 361.8 2.58
fit/PSA 15 675.9 313.2 362.7 2.59
NCFC [8] 15 678(8) 322(10) 356(10) 2.56(4)

HF 20 941.3 435.2 506.1 2.29
HF/NV 20 976.1 446.3 529.8 2.34
HF/PSA 20 953.7 438.4 515.4 2.31
BHF/PSA 20 928.1 417.7 510.4 2.30
fit/PSA 20 924.4 414.5 509.9 2.30
NCFC [8] 20 922(6) 425(10) 497(10) 2.27(3)

and the isospin index t = {0, 1} labels isoscalar and isovector
densities, respectively. In analogy to Ref. [13], the neutron
coupling constants Ci = Ci

0 + Ci
1, i = {ρ2, ρτ }, are fitted to

reproduce the neutron matter BHF results. This allows us to
constrain the zero-range volume parameters of the DME-based
functional, but not the parameters entering the surface part of
the functional.

We optimize the surface parameters in the DME functional
in a manner similar to the optimization done for standard
Skyrme functionals. One could think of procedures based
on semi-infinite neutron properties, or on the leptodermous
expansion of the functional [45]. Here we optimize the surface
coupling constant Cρ�ρ = C

ρ�ρ

0 + C
ρ�ρ

1 to NCFC Etot values
presented in Tables V and VI by using theoretical error bars
as weights. A simple minimization of the root-mean-square
deviation yields almost the same result. The values for the
neutron parameters of the Minnesota model are

Cρ2 = −18.25 MeV fm3, Cρτ = 4.57 MeV fm5,
(15)

Cρ�ρ = −1.8 MeV fm5,

with C
ρ2

D = Cρ∇J = CJ 2 = 0. Calculations done with these
parameters are labeled as “fit/PSA” in Tables V and VI and
“fit” in the figures.

We have set the coupling constant C
ρ2

D to zero in the fit to
neutron matter properties. In the usual Skyrme-DFT scheme,
the density dependence controlled by the power γ is needed
to produce reasonable saturation properties. For example,
the incompressibility of symmetric nuclear matter is strongly
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) Minnesota potential
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N = 20

FIG. 1. (Color online) Total energy and radius for 8 and 20
neutrons in a harmonic potential with oscillator parameters 10, 15,
and 20 MeV. Calculations using the NCFC are compared to full
HF, the DME/PSA approximation to HF with exact Hartree, and
results incorporating the resummed ladders for neutron matter using
a density-dependent adjustment (BHF) and using fit coefficients from
Eq. (15).

affected by γ , and usually an acceptable value requires γ < 1.
In the present calculations we do not constrain symmetric
matter; indeed, the Minnesota potential does not produce
realistic saturation. More generally, the density dependence

from nonzero C
ρ2

D is used to effectively account for beyond-HF
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FIG. 2. (Color online) Internal energy and radius for 8 and 20
neutrons in a harmonic potential with oscillator parameters 10, 15,
and 20 MeV as in Fig. 1.
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FIG. 3. (Color online) Density for 8 neutrons in a harmonic
potential with oscillator parameter 10 MeV. The noninteracting
density (HO) is compared to calculations using the NCFC (shaded
region), the DME/PSA approximation to HF with exact Hartree,
and results incorporating the resummed ladders for neutron matter
via a density-dependent adjustment (DME/PSA BHF) and using fit
coefficients.

and three-body effects. The simplicity of the NN-only
Minnesota potential seemingly lets us transfer beyond-HF

effects to the other coupling constants and omit the C
ρ2

D term
entirely.
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FIG. 4. (Color online) Density for 20 neutrons in a harmonic
potential with oscillator parameter 15 MeV; see Fig. 3 caption.
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FIG. 5. (Color online) Form factor for 8 neutrons in a harmonic
potential with oscillator parameter 10 MeV; see Fig. 3 caption.

In Tables V and VI, we summarize results for different trap
parameters from the NV and PSA DME implementations of
HF with exact Hartree, the two strategies to go beyond HF
(BHF and fit, both based on PSA with exact Hartree), along
with full HF and NCFC results. As already observed from the
earlier tables, the comparisons to HF shows that the DME-
HF/NV and DME-HF/PSA calculations have consistently
higher energies and radii. These trends and the comparison
to the NCFC results are evident in Figs. 1 and 2, where
energies and radii from the various DME prescriptions are
compared to a full Hartree-Fock calculation and to NCFC
calculations for 8 and 20 neutrons. The energies have been
scaled by the Thomas-Fermi energy trend N4/3h̄
 [18] to
remove the dominant dependence on N and h̄
. The error bars
from the NCFC are from the extrapolations; the exact results
for the Minnesota Hamiltonian are expected to lie within these
error ranges.

The DME/PSA BHF results improve on the HF and
DME/PSA HF results systematically for both the total and
internal energies and for the radii. They are within the
errors of the NCFC in many cases. The DME/PSA fit result
with only additional volume terms fit to neutron matter is
consistently worse than the HF results, particularly for the
internal energy (not shown). This failure is consistent with
Ref. [13], where the analogous prescription was found to
introduce unacceptably large overbinding in nuclei. Here, the
total energies and rms radii are systematically too small. But
once a surface term is added and fit to the NCFC results
for the total energies, excellent systematics are found for
these energies and the predicted radii. The predicted internal
energies are also improved although there are much larger
differences from the central NCFC values than for the total
energies.
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The reproduction of coordinate-space densities and the
corresponding momentum-space form factor are shown for
some representative cases in Figs. 3, 4, and 5. These examples
illustrate the very large range in interior density probed by
this set of external potentials. The improvements noted for
DMA/PSA BHF energies and radii are also seen for the
densities. The DME/PSA fit results might be judged the best,
although the error bands from the NCFC calculation are too
large to allow a definitive conclusion. The form factor is given
by

F (q) = 1

N

∫
dr 4πr2ρ(r)

sin qr

qr
. (16)

Not surprisingly, the characteristic features of the first mini-
mum and height of the second maximum are well reproduced
within the NCFC error band.

IV. SUMMARY

In this paper, we perform test calculations to help develop
density functionals for nuclei using microscopic input. In
particular, we use the density matrix expansion as a bridge
from many-body perturbation theory to EDFs that can be
used in solvers and with optimization techniques developed
for phenomenological Skyrme functionals. There are many
implementation questions and options for the DME, some
of which are addressed in the present work. Ultimately
we will use high-precision two- and three-body nuclear
interactions, such as from chiral effective field theory, evolved
to softer forms using renormalization group methods. This
softening makes them suitable for a MBPT treatment, unlike
conventional interactions. As an interim step, we have used
the Minnesota potential as a (moderately) soft, semirealistic
interaction for our tests.

The test environment is interacting neutrons in a harmonic
trap. By varying the oscillator frequency of the trap, different
inhomogeneous density profiles are probed. According to
DFT, an EDF for self-bound nuclei should be the same for
the neutron systems, with the simple addition of the external
potential to the Kohn-Sham potential and Uext to the energy
functional. Thus we can make controlled explorations of the
energies for different density distributions. The predictions are
validated against ab initio calculations using NCFC methods,
made possible for 8 and 20 neutrons by computational
and algorithmic advances enabled by the UNEDF project.
A key feature is that the same Hamiltonian is used for
the ab initio solution and the functional. This allows us
to more reliably isolate different sources of approximation
errors.

Comparisons were first made between the DME at the HF
level and full HF calculations. The best results for the im-
proved form of the DME, which uses phase-space averaging,
were consistently superior to the original Negele-Vautherin
formulation. This agrees with the findings in Ref. [27], where
it was found in non-self-consistent calculations of nuclei that
the PSA-DME was the most accurate formulation when the
expansion is truncated at second order in gradients. (Note that
the improvement will be more significant for more realistic

interactions including spin-orbit and tensor forces.) Several
options for treating the Hartree (direct) contribution were
considered, with a clear preference for an exact treatment in the
PSA version of DME. This is consistent with past experience
applying the DME.

There are still systematic discrepancies between the best
DME Hartree-Fock calculations and the full HF results. This
is in contrast to results from recent exact-exchange orbital-
based calculations, which find extremely close agreement
with HF for the same neutron systems and interactions [44].
Thus the source of the discrepancies seems to be the DME
approximation and not simply the use of a local Kohn-
Sham potential. This implies that DME-based functionals
will always need to be supplemented with some correction
mechanism for inherent DME approximations as well as for
errors from many-body approximations.

Hartree-Fock is a good quantitative starting point for these
neutron drop systems with the Minnesota potential, but the
full NCFC solutions show clear differences in the patterns of
energies and radii. These differences are used as a testbed for
two ways to incorporate correlations beyond HF in the DME
functional. In both cases, Brueckner-Hartree-Fock calculations
of neutron matter with the Minnesota potential were used
as the exact reference. (Instead, one could use ab initio
calculations if available, or else calibrate to phenomenological
values.)

In the first approach, the functional was modified by
density-dependent terms, while in the second approach, the
interaction was supplemented with Skyrme-like contact terms,
whose coefficients were fit to the neutron matter calculation.
The first method (labeled BHF in the figures), showed
systematic improvement from DME Hartree-Fock toward the
full NCFC results, for both the energies and the radius. The
second method with volume terms only was found to be
unacceptable, but the addition of a fit surface term improved
the systematics dramatically, to roughly the error limits of
the current NCFC calculations for the total energies and the
predicted radii. These results validate the strategies planned
for more realistic forces.

There are many ways forward from the present calculations.
The neutron drop system will continue to be a valuable tool for
diagnostic testing, which will include using nonharmonic (e.g.,
Woods-Saxon) and deformed traps. On-going development of
the density matrix expansion includes the extension to pairing,
which will be tested using open-shell neutron numbers,
and extensions to incorporate higher-order MBPT and more
complete low-momentum potentials. These extensions will
be tested both in the neutron drop systems and for ordinary
self-bound nuclei. Work in these directions is in progress.
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