Symmetry Breaking and

Correlations in Nuclei

| — Spontaneous Symmetry Breaking
and Restoration in Finite Systems



Nuclear Many-Body Correlations

short-range long-range collective correlations
(hard repulsive core of nuclear resonance modes large-amplitude soft modes:

the NN-interaction) (giant resonances) (center of mass motion, rotation,
low-energy quadrupole vibrations)

...vary smoothly with nucleon number! ...sensitive to shell-effects and strong
Can be included implicitly in an effective variations with nucleon number!
Energy Density Functional. Cannot be included in a simple EDF

framework.



Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking (SSB) = the ground state of a QM many-body system
has a symmetry that is lower than the symmetry of the underlying Hamiltonian. The

system lowers its energy through spontaneous symmetry breaking, resulting in a state
of lower symmetry and higher order.

Consider a system whose Lagrangian £ is invariant under some symmetry transformations.
For example, £ might be spherically symmetric, i.e. invariant under spatial rotations.

The ground state of the system: 1) unigue and invariant under the symmetry
transformations of £

2) degenerate and the corresponding eigenstates are
not invariant, but transform linearly amongst
themselves under the symmetry transformations of £.
= there is no unique ground state.



If we arbitrarily select one of the degenerate states as the ground state, then the ground
state no longer shares the symmetries of € = SPONTANEOUS SYMMETRY BREAKING

The Goldstone model: & (x) — [3”05* (x)] [8y¢(x)] — ﬂ2|¢(x)|2 - ’1|¢(x)|4

- complex scalar field: d(x) = —\—}5 [0 (x) + gy (x)]

. . 0 _ o _ 0¢
- relativistic notation: B = LD = O,y 6_x,1 = ¢ = o M

The Lagrangian density is invariant under the global U(1) phase transformations:

6(x) = ¢'(x) = p(x)e’*,  ¢"(x) = ¢"'(x) = ¢ (x)e™

v 2 2 4
The potential energy density of the field: 4 (45) =H |¢(x)| + l|¢(x)|

For the energy of the field to be bounded from below: A > 0. Minimum of the potential ?



7 (¢) = 12|p(x)[* + Alp(x)[*

The potential has an absolute minimum
for the unique value ¢(x) = 0 = normal
modes of oscillation about the stable
equilibrium position.

¢, (x)

In quantum field theory the state of lowest energy is the vacuum | 0 >. In this case the
ground state is unique and the expectation value of the field ¢(x) vanishes:

(0] (x)|0) =0
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Local maximum for ¢(x) = 0 and minimum for:
2\ 72
¢<x>=¢o=(%) 0 <h<om

= the state of lowest energy is not unique.
It is determined by the choice of 9, e.g. 9=0:

The symmetry is spontaneously broken

because the ground state does not share
the symmetry of the Lagrangian and the
field ¢(x) does not vanish in the vacuum

state:

(0]op(x)0) = ¢y

¢ > complex order parameter.



1
= introduce two real fields o(x) i n(x):  @(x) = —= [v + a(x) + in(x)]

V2

In terms of these fields, the Lagrangian density:

u L ¢, free Lagrangian
SR ;A
= [0"n(x)][0
— hoo()[2(x) + 2 (®)] ~ 7 Ho*(x) + ()

\ }
|

interaction terms

On quantization, both fields lead to neutral spin-0 particles: the o boson with the (real
positive) mass (2Av2)¥2and the n boson of mass 0.



o(x) = represents a displacement in the radial plane in which the potential energy density
increases quadratically with o.

n(x) = represents a displacement along the valley of minimum potential energy = constant,
so that the corresponding quantum excitations: n bosons — are massless.

The zero mass of the Goldstone bosons is a consequence of the degeneracy of the vacuum.



SSB in finite systems with a small number of particles

Two-step method:

1) symmetry breaking at the mean-field level. The system lowers the energy by including
static correlations. The many-body wave function is a single Slater determinant associated
with “central mean-field”. Examples for nuclei:

— translational invariance of the Hamiltonian = localized solutions

—> rotational invariance = deformed nucleonic density

— particle number invariance = pairing correlations

- reflection symmetry = octupole deformation of the nucleonic density

2) Subsequent restoration of the broken symmetry via projection techniques = beyond the
mean-field approximation the projected many-body wave function is a linear superposition
of Slater determinants and it preserves all the symmetries of the original many-body
Hamiltonian = dynamical correlations additionally lower the energy of the system.

Important! The lower symmetry found at the broken symmetry does not disappear, it
becomes intrinsic or hidden.



Collective correlations



Restoration of Broken Symmetries

A self-consistent mean-field wave function breaks necessarily several symmetries of the
nuclear Hamiltonian (translational, rotational).

EXAMPLE: the only translational invariant product wave functions are products of plane
waves, but they cannot be used to describe strong correlations between nucleons and their

clustering into a finite nucleus.

Symmetry of a Hamiltonian and Broken Symmetry

- symmetry of the Hamiltonian of the system:

UHUT = H H,U|] =0

-unitary transformation: preserves the norm of state vectors and the matrix elements of
observables.

-symmetry group of H: the eigenvectors of H are classified according to the irreducible
representation of the symmetry group.




State of broken symmetry (deformed state): cannot be classified according to an irreducible
representation of the symmetry group of the Hamiltonian H.

— set of unitary operators (representing the symmetry group of the Hamiltonan).
U(Oé) The parameter a can be discrete or continuous.

[Pa) = U(a)|®)

(Da|H|Pa) = (DU (a)HU (o)|®P)
= (O|H|P) Vo

= all deformed states |® a > are DEGENERATE.




Symmetries of the Hartree-Fock field

|® > - independent-particle state with the associated single-particle density p

pij = (®laj a;|®) = (P|p|®)

- consider a unitary transformation: ‘6> — U‘(I)>
C> pij = (®laj a;|®)
- with: U+ +U Zk ka: U+CL¢U — Zk Uikak

ﬁ> 5=UpUT
— in the HF approximation: E <(I)‘H‘(I)>
>¢ UHUY = H d> Elp] = Elp]




Elp) = Elp] © >  h[p] = UhlplU*

transformation of the Hartree-Fock hamiltonian

1) the density matrix p is invariant under the transformation U:

p=p = hlp]=nhlp

U represents a self-consistent symmetry of the HF hamiltonian.

2 pFp  |hp, U F#0

U represents a broken symmetry of the HF hamiltonian.

Example: translational symmetry is always broken by the HF potential of a bound
finite system.



Symmetries in the presence of pairing fields

In the Hartree-Fock-Bogoliubov (HFB) approximation the quasiparticle vacuum is characterized
by the generalized density matrix:

_( K
R”_(-—Wk'ﬂ—p*>

— unitary transformation: ’$> e U’(I)>

D pij = (®lala;|®) = (UpU™)y

/_ﬂiij —

U 0

R -
R = URU U={ 0 o+




If U represents a symmetry of the Hamiltonian H = E[R] — E[R]

|:> H [ﬁ] e Z/[H [R]Z/{—I_ transformation of the HFB Hamiltonian

1) self-consistent symmetry of the HFB Hamiltonian

RU =0 R=R UHU =H
2) broken symmetry

RU A0 R#AER  UHUT #H

The pairing field breaks the invariance with respect to the transformation induced by

the operator: .
_ N _ +
U=c¢ N=)> Sa; a;

2ip
= L p Ke
— > [R=URU _(_K*B_M ]l—p*)




Broken symmetries in finite systems

In finite systems broken symmetries arise only as a result of approximations (variational
principle applied to a restricted set of trial wave functions).

A broken symmetry implies a degeneracy of the solutions of variational equations.

Pa) = U(a)|®)

SYMMETRY RESTORATION -> the new wave function is a linear superposition of the
degenerate deformed states.

Y) = [ daf(a)|®a)

The minimization of the energy with respect to the expansion coefficients f(a) is equivalent
to the projection of states of good symmetry from the deformed state |® >. The resulting

states can be classified according to the irreps of the symmetry group.



EXAMPLE: parity - discrete broken symmetry

| ® > a normalized state that is not an eigenstate of the parity operator M. [H,M]=0 implies
that the linearly independent states |® > and M| ® > are degenerate.

—> new trial function: ‘@D()\» — ‘(I)> -+ )\H’(I)>

— parameter to be evaluated by minimizing
the energy expectation value

B = (U(N)[H|T(N)) 1+ A2+ 2\(HII)/(H)

(T(N)|P(N)) = \H) 1+ A2 + 2)(II)

=0 = [[(HI) — (H)(](1 - ) =0




If |®@ > is neither an eigenstate of the Hamiltonian H, nor of the parity operator:

<HH>#<H><H> — A\ = *+1

—> parity eigenstates:

\xpﬁ:%@:ﬂ)\@ | L) = [0

The same states are obtained by simply acting with the projection operators:

Py = —(1+10)

on the deformed state |® >. The degeneracy of the deformed states |® >and N|® >
has been removed:

(HIT) — (H)(IT)

E,—E_ =2
" 1 —{I1)?




Non-conservation of particle number

| ® > a normalized state, not an eigenstate of the particle number operator N.

H N =0 = e N®) acl0,2n]

degenerate states!
27T
da
| G r@lea)

- new 27
. d A
function: |\If> :/ Oéf( ) zaN|(I)>
0

. N =N —, Do) = e_iO‘N\CI)>
The projection on states with good particle number is equivalent to the requirement that
the energy: (U|H|W)
ST
searoarywty [ da g do’ £ () (Ba H|@a') (o)

respect to variations —

of f*(a) and f(a). fo% doy fOQW do’ F*(a)(Pa|Pa’) f (o)



P | [ e - Ba) =0

Hill-Wheeler equation

the solutions are eigenstates of the particle number operator!

Fourier transform:

o0 27T
(n—n)o dov —zn n)o
:an€< ) — fn:/ 2 : )f()
n=0 0 7T

$ HW equation: Z fn<q)’(H — E)Pn’q)>62(n_ﬁ)a — O

where: n=0

27 dOé — operator projecting onto states
P S / —i(N—n)a with particle number n.
0

e
2T




The Hill-Wheeler equation is valid for all angles a:

= > fol®@|(H — B)Py| @) =0

nonvanishing coefficients exist only if the energy E equals:

O|HP,|9)

K
o = )P, )

The solution of the HW equation is the projected state:

‘\Ij> — fn’\Pn>7 ‘\Ijn> = Pn‘q)>

= fn is @ normalization constant.



L

00 = v(1d5/2)* “ONe = v(1d5/2)? m(1d5/2)?

Deformation-driving part of the effective interaction - T=0 Qp-Qn force




—> deformation results from the coupling of nuclear surface oscillations to the motion of
individual (valence) nucleons. The particle-vibration coupling leads to the nuclear

Jahn-Teller effect = the lowest-energy intrinsic state is not an eigenstate characterized
by the symmetry group of the total Hamiltonian.

The nuclear Jahn-Teller effect
{Q}

{f} —_— {Zlﬁj} FAST (noncollective) coordinates

{Qj } SLOW (collective) coordinates

H:TQ’—FTf—I—V(Q,f)

= at a given point in the collective space one solves the eigenproblem for the non-
collective Hamiltonian:

Tz + V(Q, 7)|thn (1 Q) = En(Q)ton(T; Q)



Single—particle Energy (MeV)

The total wave function:

T = anf Q)xn(Q)

l

collective wave function that
corresponds to the effective

potential!
3 02 -0. '[32 1 02 03 o

m

The effective collective potential V. .(Q) contains the coupling term between different

single-particle states:
Z < n|Tzlm > xm(Q)




Angular momentum projection

LAB. y2

M bk = = = —

3 INT.

Symmetry violation in many-particle
wave functions can be related to
collective motion.

A deformed wave function |® > defines a fixed
orientation in space (principal axes of the mass
distribution). All wave functions:

|OQ>=R(Q) |O®>

have the same internal structure and yield the
same energy expectation value = collective
rotational motion approximately preserves the
intrinsic structure.




Angular momentum operators in the laboratory and intrinsic frames

INT. €q (CL =1, 2, 3) : €q " €p = 5ab7 €q X € = €apcle
LAB. az (Z — &, Y, Z) : éa — 7§’6173(52)&7;7 (2 = {Oé, 67 7}
Euler angles

The Euler angles are dynamical variables which specify the orientation of the intrinsic
frame.

Def. intrinsic angular momentum operators: Ia, — €4 J

— —

:Ia, Jz] =0 Va,z’ = =
_ . I — J ; [3, JZ
_Icw Ib] — _Zeabc-[c

set of commuting operators,

72 2 2 T2 can be diagonalized simultaneously.
r2=N"r=N 2=
a ()




T3 IKM) = I(I+1IKM)
§> LIIKM) = K|[IKM) —I<K<I
JIIKM) = M|IKM) —I<M<I

> HKM){IKM|=1, (IKM|I'K'M'Y = 811/ 0k 1/ S i
ITKM

The states |IKM > can be represented by the wave functions < Q|IKM >, which depend on
the Euler angles Q = {a,B,y}. With the definition of the state |Q >:

Q) = R(Q)Q = 0)
=

(QIKM) = (Q=0RT(Q)|[KM)

= > (Q=0I'K'M')(I'K'M'|R*(Q)|IKM)
I"K'’" M’



The rotation does not change the intrinsic angular momenta => K=K’ and I=I". If the Euler
angles are chosen in such a way that the INT and LAB frames coincide for Q=0:

<Q:O’[KM>:C[5KM C[:\/(Ql—I—l)/Sﬂ'z

= > QKM

V(21 +1)/872D7 ;1 ()
= V@It 1)/8r%e M d e (8)e "

27 +1 : :
IKM|II'K' M) = == / dQODY, . (Q) DL (Q)

872

— 51]’5KK’5MM’




Variational principle and angular momentum projection

—_
Deformed state |® >, not an eigenstate of J 2, J3

7?/(057 67 ’7) _ 6—ian€—iﬁJy6—inyz

[H, R] — O — ‘(I)Q> — R(Q)‘(I)> degenerate states

—> new trial function: ‘\Ij> — /dﬂf(ﬂ)‘q)gn — /de(Q)R(Q)’(I)>
The weight function f(Q) is determined by requiring that the energy expectation:
VI H|\W
o (H )
(VW)

is stationary with respect to variations of f* and f.

S | [ a9 @) - Blo) () = 0




The solutions of the HW equation are eigenstates of the operators J 2, J3

21 +1 .
FO = 3 5 HicDhe(®) = i = [ (@)Dl
IMK

> [0 = S Pl |®)

IMK
21 +1
where: P]&K = 87‘(‘2 /dQD&K(Q)R(Q)
pl " = pl PL NP — 580w PL
( MK) — + KM ( MK) MK — VII'"UOMM'L KK/

not quite a projector!

with:  [H, Pi ] =0 §>



W equaton S (@|(H ~ E)Pleyer|®) flype =0
K/

= eigenvalues determined by the equation:

det [(B|(H — E) Pl | ®)] = 0

a) the HW equation is equivalent to the diagonalization of the hamiltonian in the basis P]‘\T4K|<I>>
b) H does not connect states with I£1’, and the eigenvalues do not depend on M

= eigenstates: ‘\IJIM> — Z f]{4KP]{4K‘(I)>
K

In cases when the wave function |®> has axial symmetry = K=0 and the coefficients are
determined by the normalization of |W>. In general the Hamiltonian has to be minimized
with respect to the coefficients f.



Projection before and after variation

How do we determine the deformed (symmetry-violating) intrinsic function |® > ?

i) Variation before the projection (VBP)

(P H|P)

| ® > is determined by the variational principle: 5 —

(@)

The deformed solution is a superposition of eigenstates of the corresponding symmetry
operator (for example, angular momentum). The wave function:

Ur) = P'|2)

is no longer a product wave function, but a complicated superposition of Slater
determinants. It contains many more correlations than the function |©® >.

This method violates the variational principle, because we do not vary the projected wave
function. It does not allow for changes in the self-consistent mean-field for different values
of | (within a rotational band).



ii) Variation after projection (VAP)

(U, |H|Y;)  (®|P'HP'|®)
:> ’ (Pr|¥r) =0 (®|PIP!®) =Y

= minimize the expectation value of the projected energy PIHPI
within the set of product wave functions |® >.

This method corresponds to a double variation, using the ansatz:

) = / 10 (Q)R(Q)|®)

and varying the energy with respect to both the weight function f(Q) and the
generating function | >.

Much more complicated than VBP!



