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1. Computational Nuclear 
Physics 
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 More cores, less memory 

 More exotic architectures 
(heterogeneity) 

 More redtape to get runtime… 

 … and less runtime when you get it 
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 Hardware changes much faster than software 

• Constant changes of programming paradigms: from vector (Cray) 
to scalar (current) to vector (GPU) 

• Biggest DFT codes are (at least) 20 years old and monolithic 

 New challenges at HPC scale 

• Input/Output: How to store/access/exploit GB/TB of data 

• Fault-tolerance: the machine may crash before your run is 
completed 

 Workforce 

• Computer scientists do computer science, nuclear theorists do 
nuclear theory: who does computational nuclear theory? 

• No workforce development model  
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2. Uncertainty Quantification  
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 Extrapolations of current models (DFT and others) 
beyond stability leads to large discrepancies: where is the 
truth? 

 Until recently, no effort was made to try to quantify the 
uncertainties of each approach 
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 Model errors: Non-relativistic vs. 
relativistic, zero-range vs. finite-range, 
EDF vs. mean-field + correlations, etc. 

 Fitting errors: Choice of experimental 
data, of the optimization method,  

 Numerical errors: Numerical 
implementation, truncation effects, 
numerical simplifications 
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 Bayesian inference methods 
treat model parameters as 
genuine random variables 

 Posterior distribution allows 
to quantify uncertainties 
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 “Know thyself”: use statistical techniques such as 
covariance and sensitivity analysis to better understand 
models 

 Further explorations of Bayesian inference to quantify 
fitting errors 

• Thousands of Markov-Chain Monte-Carlo runs are necessary to 
produce a distribution: response functions are needed 

• Can we apply such techniques to quantify uncertainties on 
complex observables such as fission half-lives or beta-decay 
probabilities? 

 Quantify systematic errors by rigorous model-to-model 
comparisons 



3. Microscopic Description of 
Nuclear Fission 
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Spontaneous 
fission 

Induced 
fission 

 Beautiful and challenging 
quantum many-body problem 

 Ends nucleosynthesis and 
determines the limits of stability 

 Important applications in 
society: energy, bad stuff, etc. 
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 Simple observables (energies, ratios (yields), lifetimes) are 
among the most difficult quantities to compute 

 Example: Half-lives range from 1021 years (232Th) to …0.25 ms 
(250No) covering more than 30 orders of magnitude! 
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Hypersensitivity 
to the model: 
the ultimate 
challenge 



Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 
16 

 Tackling the computational problem 

• Near scission up to a dozen collective variables are needed 

• Numerical precision is not trivial for such geometries in such 
heavy nuclei 

 Understanding the quantum mechanics of scission 

• When one quantum many-body problem becomes two 

• No equilibrium, highly-excited nuclei, time-dependent, etc. 

 At least understanding isolating the source of major 
uncertainties 

• Dependence of final observables on underlying EDF and 
treatment of correlations 

• How much phenomenology will we have to accept? 

 




