Active Target - Time Projection Chamber

Abigail Bickley Michigan State University March 10, 2009

AT-TPC Scientific Program

Table 1: Overview of the AT-TPC scientific program.

Measurement	Physics	Beam	Beam Energy	Min Beam	Scientific
		Examples	(A MeV)	(pps)	Leader
Transfer & Resonant	Nuclear Structure	$^{32}Mg(d,p)^{33}Mg$	3	100	Kanungo
Reactions		26 Ne(p,p) 26 Ne			
Astrophysical Reactions	Nucleosynthesis	25 Al(3 He,d) 26 Si	3	100	Famiano
Fusion and Breakup	Nuclear Structure	${}^{8}\mathrm{B}{+}^{40}\mathrm{Ar}$	3	1000	Kolata
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS,	⁵⁴ Ni- ⁷⁰ Ni,	50 - 200	50,000	Garg
	Nuclear Astro.	106 Sn- 127 Sn			
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn,	50 - 200	50,000	Bickley
		³⁷ Ca - ⁴⁹ Ca			

Detector will make use of the full range of beam energies and intensities
 available at NSCL

- Experiments with rare isotope beams continuously push the limits of low beam intensities and low cross sections
- AT-TPC will address these limitations by providing access to reactions at beam intensities as low as 100pps

March 10, 2009

Scientific Program: Transfer Reactions

- Objective:
 - Study (d,p), (³He,d) and (α,t) in inverse kinematics in the vicinity of closed shells
 - Probe shell closures far from stability
 - Study reaction rates important for astrophysics
- Beams of Interest:
 - Examples: ³²Mg(d,p)³³Mg, ²⁵Al(³He,d)²⁶Si
 - Energies: 1-3 A MeV
 - Intensities: ≥ 100pps
- Reaction Characteristics:
 - Low collision multiplicities
 - Measurement of low energy products requires reduced pressure chamber gas
 - Good collision vertex reconstruction
 - Internal triggering of detector
 - Track reconstruction with good angular resolution

Scientific Program: Heavy Ion Reactions

- Objective:
 - Use reaction observables to constrain the nuclear equation of state for isospin asymmetric matter exposed to densities both above and below ρ_0
 - $\rho > \rho_0$: charged pion production, nucleon squeezeout, nucleon elliptical flow
- Beams of Interest:
 - Species: ⁴⁰Ca, ⁴⁸Ca, ¹¹²Sn, ¹²⁴Sn
 - Energies: 50 150 A MeV
 - Intensities: 5x10⁴ pps, limited by ionization of chamber gas
- Reaction Characteristics:
 - High multiplicity ~100 collision products
 - Relatively high energy products ... will exit chamber
 - Need full event characterization
 - Rare probes

¹¹²Sn+¹¹²Sn, 150MeV, b=2fm

AT-TPC Introduction

- Fixed Target Mode:
 - A target wheel will be installed within the chamber thus the gas will serve only as a detector
 - Configuration will reflect standard TPC conditions (ex: P10 @ 1atm)
- Active Target Mode:
 - The chamber gas will act as both detector and target
 - <u>Gas identity</u> and <u>pressure</u> chosen based on experimental requirements
 - Limitations imposed by low beam intensities will be addressed by providing a thick target while retaining high resolution and efficiency

AT-TPC Components

- 1. Chamber
- 2. Targets
- 3. Readout Plane
- 4. Magnetic Field
- 5. Triggering
- 6. Electronics
- 7. Simulations

March 10, 2009

Abigail Bickley - GET Collaboration Meeting

- 3-20µm variable thickness mylar
- 33cm radius exit window
- Port for removable target wheel
- Mounted on rails within solenoid
- Can be coupled with ancillary systems

Abigail Bickley - GET Collaboration Meeting

March 10, 2009

- Fixed Target Mode:
 - Removable target wheel that accommodates multiple targets
- Active Target Mode:
 - Identity and pressure of the gas used to fill the detector will be dependent upon the experimental requirements.
 - H₂, D₂, ³He, Ne, Ar, Isobutane
 - Pressures ranging from <0.2-1.0 atm
 - Ionization & e- drift depend on physical properties of gases
 - P10: 5.5cm/μs, 22 /μs total drift length
 - H₂: ~1cm/μs, 120 /μs total drift length

March 10, 2009

Abigail Bickley - GET Collaboration Meeting

3. Readout Plane

- Physical Features:
 - Covers endcap of chamber with beam entrance window
 - Number of pads: ~10k
 - Pad size: 0.5 x 0.5cm²
- Composition:
 - Wire Plane
 - ✓ Well known stable behavior,
 - x Reduced resolution
 - x Feedback of +ions into drift region
 - GEMs
 - ✓ High gain
 - ✓ Low +ion feedback
 - x Sensitive to sparking
 - x Localized e- cloud
 - MicroMegas
 - ✓ High gain
 - ✓ Low +ion feedback
 - x Localized e⁻ cloud (resistive foil)

Test Chamber

4. Magnetic Field Considerations

Solenoid

- Beam trajectory centered in magnet
- Beam path independent of beam species & energy
- Optional field cage can be used to mask
 beam ionization
- Narrow downstream acceptance
- Limited momentum resolution at very forward angles

Dipole

- Good momentum resolution in forward direction
- Wide downstream acceptance
- Beam trajectory influenced by Bfield
- Beam path dependent upon beam species & energy
- Difficult to mask beam ionization
- Difficult to distinguish +products from beam

4. TWIST Solenoid at NSCL

TWIST Solenoid

- Superconducting solenoid
- 2 Tesla Field
- Bore Dimensions:
 105 cm diameter
 229 cm length
 107 cm beam height (w/o yoke)
 130 cm beam height (w/ yoke)
- Field Non-uniformity: < 1%

March 10, 2009

Abigail Bickley - GET Collaboration Meeting

September 22, 2008

11

- ✓ Nov 11: LN₂ temperature stabilization
- Vov 21: LHe temperature stabilization
- ✓ Nov 25 & 26: field ramping & uniformity tests Cryogen use rate:

```
LN_2 = 185 L/wk
```

- LHe = 41 L/week (not in persistent mode)
- χ Yoke will be assembled after the new experimental hall is completed

5. Triggering

- Requirements:
 - Beam trigger -
 - Provided by PPAC & RF-ToF before beam enters chamber
 - Internal trigger -
 - Discriminator incorporated in TPC electronics to be used as a threshold trigger
 - Will allow 3D hit multiplicity threshold cut to be applied online
 - Necessary for experiments with low energy products that do not exit the chamber
 - Will allow online centrality trigger based on collision multiplicity for heavy ion reactions experiments
 - External trigger -
 - Downstream calorimeter to measure Z of leading particle
 - Primarily for heavy ion reactions

Necessary

- Large dynamic range
- Internal triggering capability
- 1kHz/chan data rate
- Zero suppression
- Accommodate external trigger

Desired

- 14 bit ADC
- Data compression

-10⁻

-15 -20

-25 20 Single Event

pad_center_y:pad_center_x:time_center:signal {signal>1}

-10 -20

center

¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay \rightarrow
- 4) GEANT4 \rightarrow
- 5) e^{-} drift \rightarrow
 - long diff = $300 \,\mu\text{m/cm}^*$ drift distance
 - trans_diff = 145 µm/cm * drift distance
- 6) Pixelization
 - Cut: Signal>1
- Examine # Time Buckets
 - Time Buckets = 511
 - Occupancy = 3%
- Examine detector occupancy per event
- Examine ASAD & CoBo occupancy

100

time_center

50

¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay →
- 4) GEANT4 \rightarrow
- 5) e⁻ drift \rightarrow
 - long_diff = 300 µm/cm * drift_distance
 - trans_diff = 145 µm/cm * drift_distance
- 6) Pixelization
 - Cut: Signal>1
- Examine # Time Buckets
 - Time Buckets = 128
 - Occupancy = 11%
- Examine detector occupancy per event
- Examine ASAD & CoBo occupancy

Single Event

pad_center_y:pad_center_x:time_center:signal {signal>1}

¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay →
- 4) GEANT4 \rightarrow
- 5) e⁻ drift \rightarrow
 - long_diff = 300 µm/cm * drift_distance
 - trans_diff = 145 µm/cm * drift_distance
- 6) Pixelization
 - Cut: Signal>1
 - Time Buckets = 128
- Assign pads to an AsAd
 - 26 identical sectors in ϕ
 - <AsAd Occupancy> = 1-40%
- Assign AsAds to a CoBo
 - ~ independent of position

100 Events

oad_center_)

20

¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay \rightarrow
- 4) GEANT4 \rightarrow
- 5) e⁻ drift \rightarrow
 - long diff = $300 \,\mu$ m/cm * drift distance
 - trans_diff = 145 µm/cm * drift distance
- 6) Pixelization
 - Cut: Signal>1
 - Time Buckets = 128
- Assign pads to an AsAd
 - 26 identical sectors in ϕ
 - <AsAd Occupancy> = 1-40%
- Assign AsAds to a CoBo
 - ~ independent of position

0

0

100 Events

pad_center_y:pad_center_x {signal>1}

pad_center_x

70

60

50

40

Radíal AsAd Layout

Design assumptions:

- Based on T2K FEC
- FEC dimensions = 2.0cm x 14.0cm x 25.0cm
- Require 26 cards
- Only 25 fit within geometrical constraints

Abigail Bickley - GET Collaboration Meeting

- Design assumptions:
 - FEC dimensions of 1.0cm x 9.3cm x 17.0cm
 - now known to be too small

Staggered AsAd Layout' ¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay →
- 4) GEANT4 \rightarrow
- 5) e⁻ drift \rightarrow
 - long_diff = 300 µm/cm * drift_distance
 - trans_diff = 145 µm/cm *
 drift_distance
- 6) Pixelization
 - Cut: Signal>1
 - Time Buckets = 128
- Assign pads to an AsAd
 - 13 inner sectors in ϕ
 - 13 inner sectors in ϕ
 - <AsAd Occupancy> = 0-60%
- Assign AsAds to a CoBo
 - Must group equal # inner & outer sectors

Staggered AsAd Layout ¹¹²Sn+¹¹²Sn, 150 A MeV, b=2fm

- 1) ImQMD \rightarrow
- 2) Gemini →
- 3) Fragment Decay \rightarrow
- 4) GEANT4 \rightarrow
- 5) e drift \rightarrow
 - long_diff = 300 μm/cm * drift_distance
 - trans_diff = 145 µm/cm *
 drift_distance
- 6) Pixelization
 - Cut: Signal>1
 - Time Buckets = 128
- Assign pads to an AsAd
 - 13 inner sectors in ϕ
 - 13 inner sectors in ϕ
 - <AsAd Occupancy> = 0-60%
- Assign AsAds to a CoBo
 - Must group equal # inner & outer sectors

Particle Identification.

- Energy deposition and radius of curvature of each particle species is unique
- Allows identification of particle species and charge state
- Dynamic range sufficient to simultaneously measure pions → light isotopes

Simulation w/ STAR resolution, scaled to EOS

Timeline & Funding

9/30/13

\$1018k 10/01/09

NSCL: Coupled Cyclotron Facility

Developed Primary Beams

					Particle	MeV/A	pnA
Commissioned in 2001	Vault and	heam-li	ne reconfig	uration in 2007	160	150	125
Commissioned in 2001	. vaut and	beam	ne recornig		180	120	125
ECR K500 N1	N2 N3	N4	N5 N6	SRF CLEAN ROOM	22Ne	120	80
0 5m 10m		2 th		1	24Mg	170	30
		00-00-00	/		36Ar	150	50
				1×11×1_	40Ar	140	50
			000-000 000		40Ca	140	22
				<u>so con al</u>	48Ca	90	15
					48Ca	110	15
K1200	900 FT S1	S2	S3		48Ca	140	80
				58Ni	140	5	
					58Ni	160	20
8 2 9					64Ni	140	7
		76Ge	13	20			
SHOPS & ASSEMBLY <					78Kr	150	25
					86Kr	100	10
		5	1		86Kr	140	20
			⊕ [,]		96Zr	120	1.5
					112Sn	120	3
	6 37 6	Har Care	Harry Caller	A CALL FRANK THE REAL	118Sn	120	1.5
					124Sn	120	1.5
AT-TPC		124Xe	140	10			
		136Xe	120	2			
				208Pb	85	1.5	
	12 38 71 7 7		Well and a	and the second second	209Bi	80	1
March 10, 2009	Abiga	il Bickley	- GET Collab	oration Meeting	238U	80	0.2

FRIB General Features

- Driver linac with 400 kW and greater than 200 MeV/u for all ions
- Ions of all elements from protons to uranium accelerated
- Space included for upgrade to 400 MeV/u, ISOL and multiple production targets

AT-TPC Program& Collaborators

Table 1: Overview of the AT-TPC scientific program.

Measurement	Physics	Beam	Beam Energy	Min Beam	Scientific
		Examples	(A MeV)	(pps)	Leader
Transfer & Resonant	Nuclear Structure	$^{32}Mg(d,p)^{33}Mg$	3	100	Kanungo
Reactions		26 Ne(p,p) 26 Ne			
Astrophysical Reactions	Nucleosynthesis	25 Al(3 He,d) 26 Si	3	100	Famiano
Fusion and Breakup	Nuclear Structure	$^{8}\mathrm{B}+^{40}\mathrm{Ar}$	3	1000	Kolata
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS,	⁵⁴ Ni- ⁷⁰ Ni,	50 - 200	50,000	Garg
	Nuclear Astro.	106 Sn- 127 Sn			
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn,	50 - 200	50,000	Bickley
		${}^{37}Ca - {}^{49}Ca$			

Lawrence Berkeley National Laboratory: I.Y. Lee, L. Phair

Lawrence Livermore National Laboratory: M. Heffner

University of Notre Dame: U. Garg, J. Kolata

Michigan State University: A. Bickley, W. Lynch, W. Mittig, F. Montes, G. Westfall

Saint Mary's University (Canada): R. Kanungo

Western Michigan University: M. Famiano