SAMURAI-TPC AND POSSIBLE PHYSICS USING IT

Tetsuya MURAKAMI Kyoto Univ/RIBF

SAMURAI (7) (Superconducting Analyzer for Multi-particles with RADIO-ISOTOPE BEAMS)

WHAT KIND OF EXPERIMENT ?

LARGE ACCEPTANCE

Large momentum byte $R_{max} / R_{min} \sim 2 - 3$ (magnet rotatable)

Large angular acceptance for neutron, vertical – 5 degrees horizontal – 10 degrees (~100% coverage up to $E_{rel} \sim 3MeV$, ~ 50% coverage at $E_{rel} \sim 10$ MeV)

CURRENT STATUS

- Budget approved 1.5BJPY in FY2008 2011
- All the contracts have been made in FY 2008 -- all the specifications are fixed
- Contracts done for
 - Superconducting dipole magnet
 - Almost full set of HI detector
 - Almost half volume of the neutron detector
 - Proton detectors
 - Triplet quadrupole magnet for beam transmission
 - Peripherals (vacuum pumps, circuit modules,...)
- START EXPERIMENTS IN SUMMER 2011

DETECTORS

- Heavy Ion Detectors
 - Beam chamber
 - Chamber/case/feedthru
 - Electronics
 - Gas handling
 - Upstream chamber
 - Chamber/case
 - Electronics
 - Gas handling
 - Downstream
 - Chamber/case/feedthru
 - Electronics
 - Gas handling
 - Charge measurement
 - Ion chamber
 - Electronics
 - Velocity measurement
 - Plastic hodoscope
 - Cherenkov
 - Total E (pure CsI)
 - Detector
 - Electronics

COMPARISON OF SAMURAI WITH EOS(HISS)

500

X

X

X

! X

800

1400

4600-1800-

1400

700

Cross section

Gap ~80 cm(expected)

Gap=100 cm

CHAMBER

FIRST EXPERIMENT WITH TPC

Bao-An Li, Phys. Rev. C71 014608 (2005)

REQUIREMENT OF TPC FOR PION RATIO MEASUREMENT

- TPC must measure MIPs in the presence of heavy particles
- Associated charged-particle multiplicity for Sn+Sn reactions (Typical combination) around 350 MeV/A ~80 or more

Need two-track resolution ~4 cm or better

• EOS TPC had already shown such capabilities.

TEST OF PARAMETERS IN+¹³²XE @400 MEV/U AT HIMAC

• Centrality Filter

Slabs of plastics (60 elements) +optical fiber +Flat Panel PMT +ASD chip board + multihit TDC Coverage:27.2°<θ_{lab}<57.5°

 Pion range counter
2mm×2+15mm+30mm×8 stacks+5mm(veto)
Coverage: 10msr
π⁺→μ⁺+ν_μ (life: 26 ns)

12kHz@Beam 3×10⁶pps with 328.5 mg/cm² target

Trigger rate:173Hz @75° Beam 3×10⁶pps with 328.5 mg/cm² target

Π -/ Π +

PERFORMANCE OF EOS-TPC

HISS TPC Characteristics					
Pad Plane Area	1.5m × 1.0m				
Number of Pads	$15360 (120 \times 128)$				
Pad Size	$12mm \times 8mm$				
Drift Distance	75 cm				
Time Sampling Freq.	10 MHz				
Signal Shaping Time	250 ns				
Electronic Noise	700 e				
Gas Gain	3000				
Gas Composition	$90\% Ar + 10\% CH_4$				
Pressure	1 Atmosphere				
B Field	13 kG				
E Field	120 V/cm				
Drift Velocity	$5 \text{cm}/\mu \text{ s}$				
Event Rate	10-80 events/ 1 sec spill				
dE/dx range	$Z = 1-8, \Lambda, \pi, p, d, t, He, Li - O$				
Two Track Resolution	2.5cm				
Multiplicity Limit	≈ 200				

Pad Signal for a Centered						
Minimum Ionizing Particle						
dE/dx (eV/cm)	1250					
Pad Length (cm)	1.2					
Electrons/eV loss	26					
Gas Gain	3000					
Efficiency of charge	0.4					
collection due to						
the integration time						
Wire-Pad Coupling	0.16					
Pad Signal (e)	11000					

Electronics Specifications										
Device	Gain	Device	Cumulative		Min I	Device				
		Noise	Noise		Signal	Maximum				
			е	mV	mV	mV	Min I's			
Preamp	$0.32 \ \mu V/e$	600 e	600	0.192	3.5	2000	570			
Shaper Amp	6.5	0.5 mV		1.3	23	2000	90			
CCD	1.0	0.6 mV	700	1.4	23	2000	90			

Table 2: Operating parameters and electronic specifications

(MeV/g/cm2)

Figure 3: dE/dx versus kinetic energy per nucleon for a variety of ions. The dynamic range of the TPC electronics is shown for two different gas gains

OUR CONSERVATIVE WISH LIST(NOT YET FIXED)

- Pad Plane Area 1.3m x 0.9m
- #Pad ~12,096 (108x112)
- Pad size 12mmx8mm
- Drift Distance >55 cm
- Time Sampling Freq. 20 MHz
- Time buckets >256
- Dynamic range at least 12bits
- Multiplicity Limit ~100 $(\rightarrow 200??)$
- Event Rate \sim a few100 events/sec
- Two Track Resolution <4 cm (\rightarrow 2 cm??)

3 million pixel volume→occupancy less than 10 % typically a few% Charged particle Multiplicity (External) Gated wire

TRADITIONAL EOS STUDY

 Multifragmentation of Participant Zone TPC is ideal 4π detector. Good acceptance for all Z
Coherent analysis of numerous observables
Fix A_{tot}, Plot vs. E/A -- Minimize finite-size effects

Can be used as a replacement of well used 4π Detector like INDRA, ISiS and so on.

EOS TPC has already shown the capability.

SYMMETRY ENERGY

Besides π -/ π + ratios

• Pion flow

• Neutrons & Protons

Relative energy spectra

Differential flow

Balance energy

Charged Fragments
t/³He ratio, ³He/⁴He ratios,
⁶Li/⁷Li ratios, ⁶He/⁶Li flow

FISSION

• Active target –plan @ GSI, 1 GeV/nucleon fission following Coulomb excitation

– track to know which foil

• Using H, He gas in TPC

Track to find interaction point (*E*). *Get the entire* excitation function at one bombarding energy

MULTI-PARTICLE FINAL STATE

 Looking for New kinds of Cluster states like ¹²Be→⁶He+⁶He

• Coulomb dissociation into p+HI(neutron-rich) Large relative energy can be covered by TPC.

NUCLEAR STRUCTURE EXPERIMENTS - (ACTIVE TARGET)

• Inelastic Scattering at intermediate enegies

- (p,p') or (α, α') inverse kinematics, 100-200MeV/n precise information on decay branch.
- Giant resonance studies to access nuclear compressibility

We cannot use higher energy beam!! <100 MeV/nucleon

- Charge Exchange Reactions
- AZ(p,n)A(Z+1), AZ(3He,t)A(Z+1) AZ(d,2He)A(Z-1)