Program	Cases	Anode design	Summary
00	0000	000000	0

ACTAR Direct and Resonant Reactions with an Active Target

Riccardo Raabe

GET Meeting Caen, 10-12 March 2009

Program	Cases	Anode design	Summary
•0	0000	000000	0
Dhysics Dro	ogram		

- Measurements with the SPIRAL2 radioactive beams
- Involve other laboratories/facilities
 - \Rightarrow ISOL and fragmentation beams
 - \Rightarrow Portable device

Program	Cases	Anode design	Summary	
••	0000	000000	0	
Dhysics Dro	ram			

Ξ

- Measurements with the SPIRAL2 radioactive beams
- Involve other laboratories/facilities

 \Rightarrow ISOL and fragmentation beams

 \Rightarrow Portable device

Physics cases

- Light ion beams:
 - one- and multi-nucleon transfer
 - resonant reactions
- Fission fragments:
 - one- and two-nucleon transfer
 - inelastic scattering to GRs

Program	Cases	Anode design	Summary
0●	0000	000000	0
	sign		
	NO124		

Maya limitations

- Efficiency
- Multiple tracks

0.

• Dynamic range

Program	Cases	
0•	0000	

ACTAR design

Maya limitations

- Efficiency
- Multiple tracks
- Dynamic range

Anode design

Summary O

ACTAR: Maya + lateral detection?

- Particle identification: particle range Si+Csl? dE/dx in gas?
- Energy measurement in gas?

Ξ

Ρ	r	0	g	r	а	1	1	1
0	C)						

Anode design

Summary O

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:

range to determine scattering point particle identification in ${\rm Si+Csl}$

²⁶Ne+p resonant elastic $E_{\text{beam}} \approx 4 \text{ MeV/A}$, pressure ≈100 mbar C₄H₁₀ 1 mm precision on range ⇒ 4-5 mm error on scattering point Induced error on E_{cm} : ≈100 keV

Ρ	r	0	g	r	а	r	r	1
0)						

Anode design

Summary O

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:

range to determine scattering point particle identification in Si+CsI

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

²⁶Ne+p resonant elastic $E_{\text{beam}} \approx 4 \text{ MeV/A}$, pressure ≈100 mbar C₄H₁₀ 1 mm precision on range ⇒ 4-5 mm error on scattering point Induced error on E_{cm} : ≈100 keV

Program	Cases	Anode design	Summary	
00	0000	000000	0	

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:

range to determine scattering point particle identification in Si+Csl

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

Energy loss (in 1 bar C_4H_{10})

- Three orders of magnitude 1 keV/mm to 1 MeV/mm in 100 mbar
- Noise: at 1 pC (6.25 MeV) is 3000 e⁻ or 1/2000 gain $10^2 \Rightarrow$ proton signals \approx 5000 e⁻

Program	Cases	Anode design	Summar	
00	•000	000000	0	

Light nuclei: resonant reactions

- Motivation. astrophysics, cluster states, IAS...
- Maya:

range to determine scattering point particle identification in Si+CsI

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

Energy loss (in 1 bar C_4H_{10})

• From range: deuteron vs proton 30% triton vs deuteron 20%

< 17 b

Program	Cases	Anode design	Summa
00	●000	000000	0

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:

range to determine scattering point particle identification in Si+Csl

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

• From total energy: better

< 🗇 🕨

Ρ	r	0	g	r	a	n	1
0	C)					

Summary O

Light nuclei: one- and multi-nucleon transfer

- Motivation: single-particle structure, exotic states, resonances beyond dripline...
- Maya: kinematics identification

one particle forward

 $^{14}\text{Be}(\text{p,t})$ at 5 MeV/A $C_4H_{10},$ pressure 100 mbar

Summary O

Light nuclei: one- and multi-nucleon transfer

- Motivation: single-particle structure, exotic states, resonances beyond dripline...
- Maya: kinematics identification one particle forward

ACTAR

- Lateral detection or energy in gas ⇒ higher pressure
- Particle identification?

Improvements: factor 3-5 on statistics (+ beam intensity...) $^{14}\text{Be}(p,t)$ at 5 MeV/A $C_4H_{10},$ pressure 100 mbar \rightarrow 500 mbar

Program	Cases	Anode design	Summar	
00	000	000000	0	

Light nuclei: one- and multi-nucleon transfer

- Motivation: single-particle structure, exotic states, resonances beyond dripline...
- Maya: kinematics identification one particle forward

ACTAR

- Lateral detection or energy in gas ⇒ higher pressure
- Particle identification?

Improvements: factor 3-5 on statistics (+ beam intensity...) Energy loss (in 1 bar C_4H_{10})

< 17 > 4

∃ >

• $^{12}\mathsf{Be}$ vs $^{12}\mathsf{Be}:$ <10%

Program 00	Cases ○○●○	Anode design	Summar

- Motivation: Giant Resonances Nucleus incompressibility
- Maya: mask for the beam light particle only (very low energy)

 $^{68}\mathsf{Ni}(\alpha,\alpha') \text{ at } 50 \text{ MeV/A} \\ \mathsf{He} + \mathsf{X}, \text{ pressure } \approx 2 \text{ bar} \\ \mathsf{E}_{\alpha} < 3 \text{ MeV}, \text{ path } < 50 \text{ mm}$

Program 00	Cases	Anode design	Summa O

- Motivation: Giant Resonances Nucleus incompressibility
- Maya: mask for the beam light particle only (very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

 $^{68}{\rm Ni}(\alpha,\alpha') \text{ at } 50 \ {\rm MeV/A} \\ {\rm He} + {\rm X}, \ {\rm pressure} \approx 2 \ {\rm bar} \\ E_\alpha < 3 \ {\rm MeV}, \ {\rm path} < 50 \ {\rm mm}$

E →

Program	Cases	Anode design	Summa
00	0000	000000	0

- Motivation: Giant Resonances Nucleus incompressibility
- Maya: mask for the beam light particle only (very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

Energy loss (in 1 bar He)

< 🗇 🕨 <

• Two orders of magnitude

Program	Cases	Anode design	Summa
00	0000	000000	0

- Motivation: Giant Resonances Nucleus incompressibility
- Maya: mask for the beam light particle only (very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

Energy loss (in 1 bar He)

イロト イポト イヨト

• Two orders of magnitude

Program	Cases	Anode design	Summary
00	0000	000000	0
			_

Fission fragments: one- and two-nucleon transfer

- Motivation: Single particle structure, pairing
- Protons at backward angles
 *E*_p < 5 MeV

 $^{68}\text{Ni(d,p) at 5 MeV/A} \\ D_2, \text{ pressure } \approx 1 \text{ bar} \\ (1 \text{ MeV protons } \rightarrow \text{ range 20 cm})$

Program	Cases	Anode design	Summary
00	0000	000000	0

Fission fragments: one- and two-nucleon transfer

- Motivation: Single particle structure, pairing
- Protons at backward angles $E_{\rm p} < 5 {\rm ~MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

 $^{68}\text{Ni}(d,p) \text{ at } 5 \text{ MeV/A} \\ D_2, \text{ pressure } \approx 1 \text{ bar} \\ (1 \text{ MeV protons } \rightarrow \text{ range } 20 \text{ cm})$

Program 00	Cases	Anode design	Summary O

Fission fragments: one- and two-nucleon transfer

- Motivation: Single particle structure, pairing
- Protons at backward angles $E_{\rm p} < 5 {\rm ~MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

Target thickness $5\times 10^{20}~\text{at/cm}^2$ Angular resolution $\approx\!\!2~\text{deg}$

Energy loss (in 1 bar D₂)

I → □ →

• Three orders of magnitude

Program	Cases	Anode design	Summary
00	000●	000000	0

dE/dx (MeV/mm)

0

 From total energy: should be possible

Fission fragments: one- and two-nucleon transfer

- Motivation: Single particle structure, pairing
- Protons at backward angles $E_{\rm p} < 5 {\rm ~MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

Target thickness $5\times 10^{20}~\text{at/cm}^2$ Angular resolution $\approx\!\!2~\text{deg}$

0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001

E (MeV)

Energy loss (in 1 bar D₂)

10

Program	Cases	Anode design	Summary
00	0000	00000	0
Technology			
recimology			

Micromegas, GEMs, wires electron detection vs induction

- Theoretical resolution with induction: 1/10 pad size Real life: $\approx 1/5$ pad size
- Micromegas/GEMs: no induction
 ⇒ direct image of electron cloud
- Diffusion? Very small?
 ⇒ few pads touched?
- (Fit of the Bragg peak still possible for heavy particles)

▲ 同 ▶ ▲ 三 ▶

< ∃ >

Program	Cases	Anode design	Summary
00	0000	00000	0
Technology			
recimology			

Micromegas, GEMs, wires electron detection vs induction

- Theoretical resolution with induction: 1/10 pad size Real life: $\approx 1/5$ pad size
- Micromegas/GEMs: no induction
 ⇒ direct image of electron cloud
- Diffusion? Very small?
 ⇒ few pads touched?
- (Fit of the Bragg peak still possible for heavy particles)

(1日) (1日)

< ∃ >

00	0000	○●0000	0
Configuration			

- Limit in the ADC 680 events/s if all 72 channels are read out
- "Intelligent" (level 2) trigger: must rely on something away from the beam ⇒ limitation of the efficiency
- $\bullet\,$ For beams at ${\approx}10^3$ pps, can we detect all beam particles?

▲圖▶ ▲屋▶ ▲屋▶

3

 ASAD element: 288 pads ⇒ 72 × 4, 36 × 8... should not be placed along the beam path

Program	Cases	Anode design	Summary
Configuration			

- Limit in the ADC 680 events/s if all 72 channels are read out
- "Intelligent" (level 2) trigger: must rely on something away from the beam ⇒ limitation of the efficiency
- For beams at $\approx 10^3$ pps, can we detect all beam particles?
- ASAD element: 288 pads ⇒ 72 × 4, 36 × 8... should not be placed along the beam path

 ≈ 10 pads per ADC \Rightarrow up to 5k events/s?

Program	Cases	Anode design	Summary
00	0000		O
Configuration			

Program	Cases	Anode design	Summary
00	0000	000000	0
c a			
Configurat	tion		

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288 imes 320
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220 imes 360^*$
36 imes 8	72	128	9216	8	$180 imes 320^{*}$

500

Program	Cases	Anode design	Summary
00	0000	000000	0
C (1)			
Configurat	tion		

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288 imes 320
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220 imes 360^*$
36 × 8	72	128	9216	8	$180 imes 320^*$

Program	Cases	Anode design	Summary
00	0000	000000	0
C (!			
Configurati	on		

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288 imes 320
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220 imes 360^*$
36 × 8	72	128	9216	8	$180 imes 320^*$

Program	Cases	Anode design	Summary
00	0000	000000	0
C (1)			
Configurat	tion		

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288 imes 320
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220 imes 360^*$
36 × 8	72	128	9216	8	$180 imes 320^*$

Program	Cases	Anode design	Summary
00	0000	000000	0
C C			
Configuratio	n		

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208 imes 288
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220\times 360^{\ast}$

Program	Cases	Anode design	Summary			
00	0000	000000	0			
Configuration						

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208 imes 288
36 imes 8	104	144	14976	13	208 imes 288
36 imes 8	88	144	12672	11	$220\times 360^{\ast}$

O

Program	Cases	Anode design	Summary		
00	0000	000000	0		
Configuratio	n				

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208 imes 288
36 imes 8	104	144	14976	13	208 imes 288
36 × 8	88	144	12672	11	$220\times 360^*$

Program

Cases

Configuration

Anode design

Summary O

Program	Cases	Anode design
00	0000	000000

Summary of modes

	Drift time	Dynamic range	Trigger	Event rate	Hit pattern	CoBo flow
Resonant reactions, transfer light nuclei						
All beam particles	$5 \ \mu s$ ightarrow 100 MHz	$\sim 10^3$	Ext or Int Level 1	1 kHz	10 pads/AGET on all AsAd	1 Gbit/s (511 cells)
Selected events			Level 2	< 100 Hz	1 full CoBo +4 CoBos at ${\sim}20\%$	$\substack{< 0.5 \text{ Gbit/s} \\ \sim 0.1 \text{ Gbit/s}}$
Inelastic scattering to GR						
Selected events	$^{25~\mu s}_{ m \rightarrow~20~MHz}$	$< 10^{2}$	Int Level 1	$> 1 \; \mathrm{kHz}$	(2 Cobos at 50%) 1 CoBo at ${\sim}15\%$	$< 1 { m ~Gbit/s}$
Transfer fission fragments						
Selected events	$^{25~\mu s}_{ m \rightarrow~20~MHz}$	$\sim 10^3$	Ext or Int Level 1	$< 1 \; \mathrm{kHz}$	2 CoBos at 50% 2 CoBos at ${\sim}25\%$	$\substack{\sim 2 \text{ Gbit/s} \\ \sim 1 \text{ Gbit/s}}$

Summary