ACTAR
 Direct and Resonant Reactions with an Active Target

Riccardo Raabe

GET Meeting
Caen, 10-12 March 2009

Physics Program

- Measurements with the SPIRAL2 radioactive beams
- Involve other laboratories/facilities
\Rightarrow ISOL and fragmentation beams
\Rightarrow Portable device

Physics Program

- Measurements with the SPIRAL2 radioactive beams
- Involve other laboratories/facilities
\Rightarrow ISOL and fragmentation beams
\Rightarrow Portable device

Physics cases

- Light ion beams:
- one- and multi-nucleon transfer
- resonant reactions
- Fission fragments:
- one- and two-nucleon transfer
- inelastic scattering to GRs

ACTAR design

Maya limitations

- Efficiency
- Multiple tracks
- Dynamic range

ACTAR design

Maya limitations

- Efficiency
- Multiple tracks
- Dynamic range

ACTAR:

Maya + lateral detection?

- Particle identification: particle range $\mathrm{Si}+\mathrm{CsI}$? $d E / d x$ in gas?
- Energy measurement in gas?

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:
range to determine scattering point particle identification in $\mathrm{Si}+\mathrm{Csl}$
${ }^{26} \mathrm{Ne}+\mathrm{p}$ resonant elastic
$E_{\text {beam }} \approx 4 \mathrm{MeV} / \mathrm{A}$, pressure $\approx 100 \mathrm{mbar} \mathrm{C}_{4} \mathrm{H}_{10}$
1 mm precision on range
$\Rightarrow 4-5 \mathrm{~mm}$ error on scattering point
Induced error on $E_{\mathrm{cm}}: \approx 100 \mathrm{keV}$

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya:
range to determine scattering point particle identification in $\mathrm{Si}+\mathrm{Csl}$

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??
${ }^{26} \mathrm{Ne}+\mathrm{p}$ resonant elastic
$E_{\text {beam }} \approx 4 \mathrm{MeV} / \mathrm{A}$, pressure $\approx 100 \mathrm{mbar} \mathrm{C}_{4} \mathrm{H}_{10}$
1 mm precision on range
$\Rightarrow 4-5 \mathrm{~mm}$ error on scattering point
Induced error on $E_{\mathrm{cm}}: \approx 100 \mathrm{keV}$

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya: range to determine scattering point particle identification in $\mathrm{Si}+\mathrm{Csl}$

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

Improvements:
factor 4 on accuracy $E_{\text {cm }}$ on 10^{3} more statistics

Energy loss (in 1 bar $\mathrm{C}_{4} \mathrm{H}_{10}$)

- Three orders of magnitude $1 \mathrm{keV} / \mathrm{mm}$ to $1 \mathrm{MeV} / \mathrm{mm}$ in 100 mbar
- Noise: at $1 \mathrm{pC}(6.25 \mathrm{MeV})$ is $3000 \mathrm{e}^{-}$ or $1 / 2000$
gain $10^{2} \Rightarrow$ proton signals $\approx 5000 \mathrm{e}^{-}$

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya: range to determine scattering point particle identification in $\mathrm{Si}+\mathrm{Csl}$

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

Energy loss (in 1 bar $\mathrm{C}_{4} \mathrm{H}_{10}$)

- From range: deuteron vs proton 30% triton vs deuteron 20\%

Improvements:
factor 4 on accuracy $E_{\text {cm }}$ on 10^{3} more statistics

Light nuclei: resonant reactions

- Motivation: astrophysics, cluster states, IAS...
- Maya: range to determine scattering point particle identification in $\mathrm{Si}+\mathrm{Csl}$

ACTAR

- Direct determination of the scattering point?
- Light particle detection in gas?
- Particle identification in gas??

Improvements:
factor 4 on accuracy $E_{\text {cm }}$ on 10^{3} more statistics

Energy loss (in 1 bar $\mathrm{C}_{4} \mathrm{H}_{10}$)

- From total energy: better

Light nuclei: one- and multi-nucleon transfer

- Motivation: single-particle structure, exotic states, resonances beyond dripline...
- Maya:
kinematics identification one particle forward

$$
\begin{aligned}
& { }^{14} \mathrm{Be}(\mathrm{p}, \mathrm{t}) \text { at } 5 \mathrm{MeV} / \mathrm{A} \\
& \mathrm{C}_{4} \mathrm{H}_{10}, \text { pressure } 100 \mathrm{mbar}
\end{aligned}
$$

Light nuclei: one- and multi-nucleon transfer

- Motivation: single-particle structure, exotic states, resonances beyond dripline...
- Maya:
kinematics identification one particle forward

ACTAR

- Lateral detection or energy in gas
\Rightarrow higher pressure
- Particle identification?

$$
\begin{aligned}
& { }^{14} \mathrm{Be}(\mathrm{p}, \mathrm{t}) \text { at } 5 \mathrm{MeV} / \mathrm{A} \\
& \mathrm{C}_{4} \mathrm{H}_{10}, \text { pressure } 100 \mathrm{mbar} \rightarrow 500 \mathrm{mbar}
\end{aligned}
$$

Improvements:
factor 3-5 on statistics
(+ beam intensity...)

Light nuclei: one- and multi-nucleon transfer

- Motivation:
single-particle structure, exotic states, resonances beyond dripline...
- Maya:
kinematics identification one particle forward

ACTAR

- Lateral detection or energy in gas
\Rightarrow higher pressure
- Particle identification?

Energy loss (in 1 bar $\mathrm{C}_{4} \mathrm{H}_{10}$)

- ${ }^{12} \mathrm{Be}$ vs ${ }^{12} \mathrm{Be}:<10 \%$

Improvements:
factor 3-5 on statistics
(+ beam intensity...)

Medium mass: inelastic scattering to GRs

- Motivation:

Giant Resonances
Nucleus incompressibility

- Maya:
mask for the beam
light particle only (very low energy)

$$
\begin{aligned}
& { }^{68} \mathrm{Ni}\left(\alpha, \alpha^{\prime}\right) \text { at } 50 \mathrm{MeV} / \mathrm{A} \\
& \mathrm{He}+X, \text { pressure } \approx 2 \mathrm{bar} \\
& E_{\alpha}<3 \mathrm{MeV} \text {, path }<50 \mathrm{~mm}
\end{aligned}
$$

Medium mass: inelastic scattering to GRs

- Motivation:

Giant Resonances
Nucleus incompressibility

- Maya:
mask for the beam
light particle only
(very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

$$
\begin{aligned}
& { }^{68} \mathrm{Ni}\left(\alpha, \alpha^{\prime}\right) \text { at } 50 \mathrm{MeV} / \mathrm{A} \\
& \mathrm{He}+X, \text { pressure } \approx 2 \mathrm{bar} \\
& E_{\alpha}<3 \mathrm{MeV} \text {, path }<50 \mathrm{~mm}
\end{aligned}
$$

Medium mass: inelastic scattering to GRs

- Motivation:

Giant Resonances
Nucleus incompressibility

- Maya:
mask for the beam light particle only (very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

Energy loss (in 1 bar He)

- Two orders of magnitude

Medium mass: inelastic scattering to GRs

- Motivation:

Giant Resonances
Nucleus incompressibility

- Maya:
mask for the beam light particle only (very low energy)

ACTAR

- Increase pressure or improve range measurement
- Detect beam track and scattered particle

Energy loss (in 1 bar He)

- Two orders of magnitude \qquad

Improvements:
Resolution: 1 mm on range
$\Rightarrow \approx 100 \mathrm{keV}$ on E^{*}

Fission fragments: one- and two-nucleon transfer

- Motivation:

Single particle structure, pairing

- Protons at backward angles $E_{\mathrm{p}}<5 \mathrm{MeV}$
${ }^{68} \mathrm{Ni}(\mathrm{d}, \mathrm{p})$ at $5 \mathrm{MeV} / \mathrm{A}$
D_{2}, pressure ≈ 1 bar
(1 MeV protons \rightarrow range 20 cm)

Fission fragments: one- and two-nucleon transfer

- Motivation:

Single particle structure, pairing

- Protons at backward angles $E_{\mathrm{p}}<5 \mathrm{MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

```
\({ }^{68} \mathrm{Ni}(\mathrm{d}, \mathrm{p})\) at \(5 \mathrm{MeV} / \mathrm{A}\)
\(\mathrm{D}_{2}\), pressure \(\approx 1 \mathrm{bar}\)
(1 MeV protons \(\rightarrow\) range 20 cm )
```


Fission fragments: one- and two-nucleon transfer

- Motivation:

Single particle structure, pairing

- Protons at backward angles $E_{\mathrm{p}}<5 \mathrm{MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

- Three orders of magnitude

Energy loss (in 1 bar D_{2})

Target thickness 5×10^{20} at $/ \mathrm{cm}^{2}$ Angular resolution $\approx 2 \mathrm{deg}$

Fission fragments: one- and two-nucleon transfer

- Motivation:

Single particle structure, pairing

- Protons at backward angles $E_{\mathrm{p}}<5 \mathrm{MeV}$

ACTAR

- Lateral detection
- Interaction point: detection beam and recoil particles
- Particle identification?

Target thickness 5×10^{20} at $/ \mathrm{cm}^{2}$ Angular resolution $\approx 2 \mathrm{deg}$

Energy loss (in 1 bar D_{2})

- From total energy: should be possible

Technology

Micromegas, GEMs, wires

electron detection vs induction

- Theoretical resolution with induction: $1 / 10$ pad size Real life: $\approx 1 / 5$ pad size
- Micromegas/GEMs: no induction \Rightarrow direct image of electron cloud
- Diffusion? Very small? \Rightarrow few pads touched?
- (Fit of the Bragg peak still possible
 for heavy particles)

Technology

Micromegas, GEMs, wires

 electron detection vs induction- Theoretical resolution with induction: $1 / 10$ pad size Real life: $\approx 1 / 5$ pad size
- Micromegas/GEMs: no induction \Rightarrow direct image of electron cloud
- Diffusion? Very small? \Rightarrow few pads touched?
- (Fit of the Bragg peak still possible for heavy particles)

Configuration

- Limit in the ADC 680 events/s if all 72 channels are read out
- "Intelligent" (level 2) trigger: must rely on something away from the beam \Rightarrow limitation of the efficiency
- For beams at $\approx 10^{3} \mathrm{pps}$, can we detect all beam particles?
- ASAD element: 288 pads $\Rightarrow 72 \times 4,36 \times 8 \ldots$ should not be placed along the beam path

Configuration

- Limit in the ADC 680 events/s if all 72 channels are read out
- "Intelligent" (level 2) trigger: must rely on something away from the beam \Rightarrow limitation of the efficiency
- For beams at $\approx 10^{3} \mathrm{pps}$, can we detect all beam particles?
- ASAD element: 288 pads $\Rightarrow 72 \times 4,36 \times 8 \ldots$ should not be placed along the beam path

$$
\begin{aligned}
& \approx 10 \text { pads per ADC } \\
& \Rightarrow \text { up to } 5 \mathrm{k} \text { events } / \mathrm{s} \text { ? }
\end{aligned}
$$

Configuration

00000

Riccardo Raabe

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288×320
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$
36×8	72	128	9216	8	$180 \times 320^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288×320
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$
36×8	72	128	9216	8	$180 \times 320^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288×320
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$
36×8	72	128	9216	8	$180 \times 320^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	144	160	23040	20	288×320
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$
36×8	72	128	9216	8	$180 \times 320^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208×288
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208×288
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$

Configuration

Module	pads W	pads L	Channels	CoBos	Size
72×4	104	144	14976	13	208×288
36×8	104	144	14976	13	208×288
36×8	88	144	12672	11	$220 \times 360^{*}$

Configuration

Summary of modes

$\left.\begin{array}{lccccc}\hline \hline & \begin{array}{c}\text { Drift } \\ \text { time }\end{array} & \begin{array}{c}\text { Dynamic } \\ \text { range }\end{array} & \text { Trigger } & \begin{array}{c}\text { Event } \\ \text { rate }\end{array} & \begin{array}{c}\text { Hit } \\ \text { pattern }\end{array}\end{array} \begin{array}{c}\text { CoBo } \\ \text { flow }\end{array}\right]$

