| S | n | i |   | 2 | Ī | 2 |
|---|---|---|---|---|---|---|
| 3 | μ |   | 5 | a | 5 | 4 |

**Cases** 

**MAYA...** 00 ...to ACTAR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# ACTAR at GANIL

Riccardo Raabe, GANIL

ACTAR Workshop CENBG, Bordeaux, June 16-18, 2008



| Spiral2       | Cases | <b>MAYA</b> | to ACTAR |
|---------------|-------|-------------|----------|
| Physics cases |       |             |          |

#### Structure of exotic nuclei: one-nucleon transfer reactions

Detailed structure ...?



| Spiral2       | Cases<br>• • • • • | <b>MAYA</b><br>00 | to ACTAR |
|---------------|--------------------|-------------------|----------|
| Physics cases |                    |                   |          |

### Structure of exotic nuclei: one-nucleon transfer reactions

Detailed structure ...?

- High density of final states
  - $\Rightarrow \mathsf{high} \ \mathsf{resolution}$
  - $\Rightarrow \gamma$ -ray detection
  - $\Rightarrow$  reasonable beam intensities

 $\Delta E < 100 \; {
m keV}$ 

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $^{A+1}Z$ 

| Spiral2       | Cases<br>• • • • • | <b>MAYA</b><br>00 | to ACTAR |
|---------------|--------------------|-------------------|----------|
| Physics cases |                    |                   |          |

#### Structure of exotic nuclei: one-nucleon transfer reactions

Detailed structure ...?

- High density of final states
  - $\Rightarrow$  high resolution
  - $\Rightarrow \gamma$ -ray detection
  - $\Rightarrow$  reasonable beam intensities

### "Niche" for active target:

- Very exotic cases
- One or two states populated
- Very low counting rates
- Low recoil energies



| Spiral2       | Cases<br>○●○○ | <b>MAYA</b><br>00 | to ACTAR |
|---------------|---------------|-------------------|----------|
| Physics cases |               |                   |          |



- High efficiency
- Angle and energy of light ejectile
- Detection of recoil (low threshold)



Example 1: <sup>78</sup>Ni(d,p)

reactions: (d,p), (p,d), (<sup>3</sup>He,d)...

| Spiral2   | Cases | MAYA | to ACTAR |
|-----------|-------|------|----------|
|           | 0000  | 00   | 0000     |
|           |       |      |          |
| Physics c |       |      |          |

### Example 2: unbound states in light nuclei



▲ロ > ▲ 圖 > ▲ 画 > ▲ 画 > の Q @

| Spiral2   | Cases | MAYA | to ACTAR |
|-----------|-------|------|----------|
|           | 0000  | 00   | 0000     |
|           |       |      |          |
| Physics c | 2565  |      |          |

 $a + A \rightarrow C^* \rightarrow b + B$ , ...

Learn about...

• Structure of the resonance: energy, width, spin, parity, decay modes

Scan the energy region by

- varying the beam energy or
- using a thick target



| Spiral2       | Cases<br>○○●○ | <b>MAYA</b><br>00 | to ACTAR |
|---------------|---------------|-------------------|----------|
| Physics cases |               |                   |          |

 $a + A \rightarrow C^* \rightarrow b + B$ , ...

Learn about...

• Structure of the resonance: energy, width, spin, parity, decay modes

Scan the energy region by

- varying the beam energy or
- using a thick target



| Spiral2       | Cases | <b>MAYA</b> | to ACTAR |
|---------------|-------|-------------|----------|
|               | ○○○●  | 00          | 0000     |
| Physics cases |       |             |          |

• Nuclear astrophysics reactions on p, α...



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Spiral2       | Cases | <b>MAYA</b> | to ACTAR |
|---------------|-------|-------------|----------|
|               | ○○○●  | 00          | 0000     |
| Physics cases |       |             |          |

- Nuclear astrophysics reactions on p, α...
- Nuclear structure

molecular states giant resonances



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

| Spiral2                                | Cases<br>○○○●                                                                                                                                             | <b>MAYA</b><br>00                                               | to ACTAR           |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------|
| Phys                                   | sics cases                                                                                                                                                |                                                                 |                    |
| R                                      | esonant reactions                                                                                                                                         |                                                                 |                    |
| • Nu<br>rea                            | clear astrophysics actions on p, $\alpha$                                                                                                                 |                                                                 | <b>—</b> —         |
| <ul> <li>Nu<br/>mc<br/>gia</li> </ul>  | <mark>clear structure</mark><br>vlecular states<br>nt resonances                                                                                          | IAS of gs<br>in <sup>78</sup> Ni<br><sup>77</sup> Ni+p ⋅ ⋅ ⋅ Sp |                    |
| • Iso<br>res<br>$A_Z$<br>$\Rightarrow$ | baric analog states<br>onant elastic scattering:<br>$Z' + p \rightarrow {}^{A+1}(Z+1) \rightarrow {}^{A}Z' + p$<br>information on the g.s. of ${}^{A+1}Z$ | <sup>78</sup> Ni Sn<br><sup>78</sup> Cu                         | <sup>77</sup> Cu+n |
|                                        |                                                                                                                                                           |                                                                 |                    |

...angular distributions!

| How MAY | A works       |            |          |
|---------|---------------|------------|----------|
| Spiral2 | Cases<br>0000 | MAYA<br>●○ | to ACTAR |







- PPAC as start detector
- reaction with a nucleus of the target gas
- drift electrons induce signals on the cathode pads (after amplification)
- 3D track determined from pads signals and drift time (resolution  $\approx 1 \text{ mm})$
- particle ID and energy from range  $R \propto E^2/MZ^2$  or from Si and Csl detectors

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)



M. Caamaño et al., PRL 99 (2007) 062502

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

| Spiraiz       | 0000 | • | 0000 |
|---------------|------|---|------|
| MAYA · result | te l |   |      |

• Transfer reactions: <sup>11</sup>Li(p,t)<sup>9</sup>Li, mass measurement...





| Spiral2       | Cases | MAYA | to ACTAR |  |  |
|---------------|-------|------|----------|--|--|
|               | 0000  | 0    | 0000     |  |  |
| MAYA: results |       |      |          |  |  |

• Transfer reactions: <sup>11</sup>Li(p,t)<sup>9</sup>Li, mass measurement...





I. Tanihata et el., PRL 100 (2008) 192592

| Spiral2       | <b>Cases</b><br>0000 | MAYA<br>○● | to ACTAR |
|---------------|----------------------|------------|----------|
| MAYA: results |                      |            |          |

• Resonant reactions:  $\label{eq:linear} {}^{11}\text{Li}(p,p') \rightarrow \text{IAS of } {}^{12}\text{Li g.s.}$ 



(ロ)、(型)、(E)、(E)、 E) の(の)

$$\frac{1^{12}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}{-\frac{1^{11}\text{Li}}}}}}}}}}}}}}}}}$$

<sup>12</sup>Be

T. Roger et al., in progress

| Spiral2    | Cases | MAYA | to ACTAR |  |
|------------|-------|------|----------|--|
|            | 0000  | 0●   | 0000     |  |
| MAYA · res | ults  |      |          |  |

 Resonant reactions: <sup>56</sup>Ni(d,d')





C. Monrozeau et al., PRL 100 (2008) 042501

æ

**MAYA...** 00 ...to ACTAR ●○○○

# From MAYA to ACTAR

### MAYA limitations, our needs...

- Restricted dynamical range Reactions with heavy beams
- Small gain Low thresholds
- Vertical angle within  $\approx \pm 45^{\circ}$ Maximum efficiency
- Limited spatial resolution Efficiency...
- One time signal each row Efficiency, multiple tracks

### ...and the solutions

- Magnetic field (electronics)
- Read-out with GEMS or MICROMEGAS
- Geometry (electronics)
- Smaller pad size
- One time signal each pad: electronics

・ロト・西ト・西ト・日・ 日・ シュウ

| Spiral2    | Cases | MAYA | to ACTAR |
|------------|-------|------|----------|
|            | 0000  | 00   | 0000     |
| <b>T</b> 1 | _     |      |          |
| I he geor  | netrv |      |          |

### Cubic geometry



## Cylindrical geometry



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Spiral2 | Cases | <b>MAYA</b><br>00 | to ACTAR<br>○●○○ |
|---------|-------|-------------------|------------------|
|         |       |                   |                  |

# The geometry, simulations

### Cubic geometry

Cylindrical geometry



Hector Alvarez Pol (USC), Pang Danyang (GANIL), Elisangela Benjamin (USC)



# Tests with MICROMEGAS at IPN Orsay



**MAYA...** 00 ...to ACTAR

# From MAYA to ACTAR

### MAYA limitations, our needs...

- Restricted dynamical range Reactions with heavy beams
- Small gain Low thresholds
- Vertical angle within  $\approx \pm 45^{\circ}$ Maximum efficiency
- Limited spatial resolution Efficiency...
- One time signal each row Efficiency, multiple tracks

#### ...and the solutions

- Magnetic field (electronics)
- Read-out with GEMS or MICROMEGAS
- Geometry (electronics)
- Smaller pad size
- One time signal each pad: electronics

・ロト・西ト・西ト・日・ 日・ シュウ