Probing the Symmetry Energy using Time Projection Chambers at NSCL and RIKEN

Abigail Bickley Michigan State University May 29, 2008

Isospin Dependent Observables

As a function of isospin, centrality, and incident energy:

- Neutron/proton energy spectra
- Neutron and proton flow
 - $p_x vs. y(v_1)$
 - Elliptic flow (v_2)
 - As a function of p_t
 - Disappearance of flow (balance energy)
- π^+/π^- spectra
- π^+/π^- flow
 - p_x vs. $y(v_1)$ and elliptic flow (v_2)
 - As a function of p_t
- Isotope energy spectra
 - t/³He ratio, ³He/⁴He ratios, ⁶Li/⁷Li ratios, ⁶He/⁶Li
- Isotope flow, p, d, t, ³He, ⁴He, ⁶Li, ⁷Li
 - $p_x vs. y$
 - Elliptic flow
 - As a function of p_t

Density Dependence of Symmetry Energy

- Density region sampled depends on collision observable & beam energy
 - $\rho < \rho_0$ examples:
 - Isospin diffusion
 - n/p ratios
 - $\rho > \rho_0$ examples
 - Pion energy spectra
 - Pion production ratios

Can sufficiently high densities be obtained?

 High densities are achieved even in collisions at 80 MeV/A

- Delta resonances formed early
- Pions evolve later (shaded regions)
- Memory of dense region of formation depends on reinteractions

Pion production sub-threshold @ NSCL

- Pion ratio retains dependence on EOS @ low energy
- Pion ratio lower at high energy because increased second-chance collisions
 wash out charge ratio
- Attention: x-axis scales are different!
- Effect previously noted at higher energies (B.A. Li, PRC67, 017601 (2003).

May 29, 2008

BUU from: Danielewicz, NPA673, 375 (2000).

Detector Requirements

- Current NSCL & RIKEN detectors not designed to detect pions.
- Need ability to distinguish particles by mass and charge state from pions to light fragments
- Able to resolve many different species of produced particles ⇒ useful for a wide range of experimental programs
- Large acceptance needed for reaction plane reconstruction
- High efficiency to distinguish pions

Detector Requirements

- Current NSCL & RIKEN detectors not designed to detect pions.
- Need ability to distinguish particles by mass and charge state from pions to light fragments
- Able to resolve many different species of produced particles ⇒ useful for a wide range of experimental programs
- Large acceptance needed for reaction plane reconstruction
- High efficiency to distinguish pions
- TPC provides large acceptance coverage of particle tracking in an applied magnetic field

AT-TPC Scientific Program

Table 1: Overview of AT-TPC scientific breadth.

Measurement	Physics	Beam	Beam	Min Beam
		Examples	Energy	Intensity
Transfer Reactions	Nuclear Structure	$^{32}Mg(d,p)^{33}Mg$	3 (A MeV)	100 (pps)
Resonant Reactions	Nuclear Structure	26 Ne(p,p) 26 Ne	3	100
Astrophysical Reactions	Nucleosynthesis	25 Al(³ He,d) ²⁶ Si	3	100
Fission Barriers	Nuclear Structure	¹⁹⁹ Tl, ¹⁹² Pt	20 - 60	10,000
Giant Resonances	Nuclear EOS,	⁵⁴ Ni- ⁷⁰ Ni,	50 - 200	50,000
	Nuclear Astro.	106 Sn- 127 Sn		
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn,	50 - 200	50,000
		${}^{37}Ca - {}^{49}Ca$		

* GMR measurements to be made in inverse kinematics with D₂ active target

TPC Principles

RIKEN: SAMURAI (based on EOS) Rai et al, IEEE Trans. Nucl. Sc. 37, 56 (1990).

- Particle Tracking:
 - Active volume filled with ionizing gas
 - Charged particle creates
 e⁻ clusters
 - e⁻'s drift in electric field to readout plane
 - Position of signal on readout plane gives 2D track coordinates
 - Signal time of arrival gives drift coordinate
 - Connect the dots to reconstruct particle path

TPC Advantages

- 4π geometrical acceptance
- High resolution and efficiency tracking
- Sufficient magnetic field to resolve light fragments in heavy ion reactions
- Multiplicity triggering for intermediate energy heavy ion reactions
- Internal triggering for low energy particles that stop in the detector gas
- Large dynamic range for particle detection
- Electronics that can accommodate large data volumes and rates

er Dual functionality as active target:

- Variable pressure and identity of gas

 Measure active target reactions with beam intensities down to 100pps

Chamber Design

NSCL: AT-TPC

- Cylinder length 120cm, radius 25cm
- Chamber designed to sustain vacuum
- 2cm radius entrance window
- 23cm radius exit window
- Removable target wheel
- 8000pads, 0.5cm x 0.5cm

May 29, 2008

Rai et al, IEEE Trans. Nucl. Sc. 37, 56 (1990).

RIKEN: SAMURAI

- Box length 150cm, width 100cm, height 55cm
- Operates at atmospheric pressure
- Target sits outside entrance window
- 11760pads, 1.2cm x 0.8cm

Solenoid

- Narrow downstream acceptance
- Poor momentum resolution at very forward angles
- Beam trajectory centered in magnet
- Beam path independent of beam species & energy
- Field cage can be used to mask beam • ionization

- Wide downstream acceptance
- Good momentum resolution in forward direction
- Beam trajectory influenced by Bfield
- Beam path dependent upon beam species & energy
- Difficult to mask beam ionization
- Difficult to distinguish π^+ from beam •

Magnetic Field

NSCL: AT-TPC

- Superconducting solenoid
- 2 Tesla Field
- Bore Dimensions:
 - ≥ 70 cm diameter
 - ≥ 120 cm length
 - ≤ 125 cm beam height
- Field Non-uniformity: $\leq 10\%$
- Consistent with a medical MRI solenoid

RIKEN: SAMURAI

- Superconducting dipole
- 3 Tesla Field
- Gap Dimensions: 200 cm pole diameter 80 cm height
- 180deg rotating base
- 650Ton weight

Historical Perspective

Table 1: Summary of TPC experiments [EOS1990, STA2003, ALI2007, T2K2007].

Syste m	Pads	Pad Size (cm)	Magnet	Field (T)	Drift(cm)
EOS	15360	1.2 x 0.8	Dipole	1.3	75
STAR	136608	0.3x1.2, 0.6x2.0	Solenoid	0.5	210
ALICE	557568	0.6x1.0, 0.6x1.5	Solenoid	0.4	250
T2K	124000	0.7x1.0	Dipole	0.2	500
AT-TPC	10000	0.5x0.5	Solenoid	2.0	120
SAMURAI	11760	1.2 x 0.8	Dipole	3.0	55

Scale of both detectors consistent with EOS experiment

NSCL: AT-TPC

- Pad plane design will allow improved resolution over both EOS & STAR
- Solenoid field constrains beam path to center of detector independently of beam identity
- Increased field strength suitable for identifying high mass species
- Drift distance coupled with readout allows for <2.5mm resolution
- RIKEN: SAMURAI
 - Identical to EOS with exception of reduced drift distance

- Fast scintillator array, θ <60°
 - Diamond detector as ToF start
- Internal trigger discriminator incorporated in TPC electronics to be used as a threshold trigger
- Downstream calorimeter to measure Z of leading particle

chamber

- Investigating opportunities to modify existing T2K electronics chain to accommodate our requirements
- Effort being led by ACTAR working group
- Dynamic range of ADC is key due to wide range of particle species to be simultaneously identified .: 12bit AFTER+ chip will be used
- Must sustain 1kHz/chan data rate
- Internal triggering capability will accommodate active target requirements of AT-TPC

Figure 1: Overview of data flow. The shaded items will be developed at NSCL while the FEC, FEM, and DCC will be adapted from the T2K experiment.

Sub - Systems

- Gas Mixing System:
 - Monitors & maintains chamber pressure and gas purity
 - NSCL: AT-TPC
 - identity and pressure of the gas used to fill the detector will be dependent upon the experimental requirements.
 - H_2 , D_2 , ³He, Ne, Ar, isobutane and P10(90% Ar + 10% CH₄)
 - RIKEN: SAMURAI
 - P10(90% Ar + 10% CH₄)
- Laser Calibration System:
 - Calibration based on drift rate of laser induced ionization
 - Compensates for changing environmental conditions and static non-uniformities in the magnetic and electric fields

Principles of Particle Identification.

Simulation w/ STAR resolution, scaled to EOS

- Energy deposition and radius of curvature of each particle species is unique
- Allows identification of particle species and charge state
- Dynamic range sufficient to simultaneously measure pions → light isotopes

May 29, 2008

Abigail Bickley, Catania, Italy

Timeline & Funding

NSCL: AT-TPC

- Proposals submitted to both NSF and DOE
- Total budget: \$1-2M
- 2008 Prototype testing, Mechanical Design
- 2009 Electronics, Magnet, Laser System, Gas Mixing
- 2010 System
 Commissioning
- 2011 First experiments

RIKEN: SAMURAI

- Magnet and supporting subsystems included in SAMURAI budget
- Proposal submitted to DOE for chamber construction at NSCL
- Chamber budget \$800k
- 2010 Chamber construction begins
- 2011 Dipole completed
- 2013 First experiments

Collaboration

NSCL: AT-TPC

- LBNL Lee, Phair
- University Notre Dame Garg
- NSCL Bickley*, Lynch, Mittig, Westfall
- Western Michigan University -Famiano

RIKEN: SAMURAI

- Daresbury Laboratory Lemmon
- GANIL Chbihi
- GSI Lukasik, Stoecker, Trautman
- Kyoto Univ. Murakami*
- LNS-INFN Colona, Di Toro, Verde
- NSCL Bickley, Brown, Danielewicz, Lynch, Tsang, Westfall
- Riken Nakai, Nishimura, Sakurai
- Rikkyo University Ieki, Murata
- SUBATECH Hartnack
- Smith College Pfabe
- Texas A&M University Yennello
- Texas A&M University Commerce Li
- Tohoku University Ono
- Western Michigan Univ. Famiano
- Universidade Federal do Rio Grande do Sul Souza
- Universidade Federal do Rio de Janeiro Cidade Universit'aria - Donangelo

