
CoBo Thoughts

Michigan State University September 25, 2008

CoBo Block Diagram

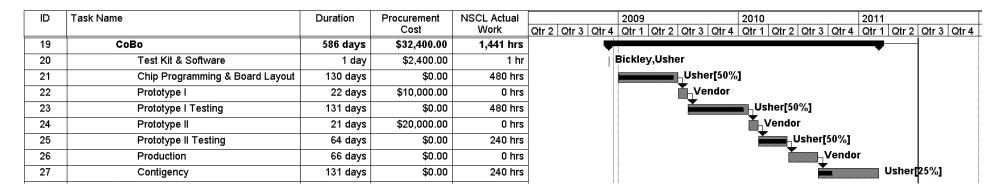
N Usher

CoBo Connectors

- To AsAd
 - ADC clock and data
 - 11 LVDS pairs
 - SCA Control
 - SCA write and read clocks (LVDS)
 - SCA write and read enables
 - Slow control to ASICs and ADC
 - 11 single-ended (SPI)
 - General Control
 - Voltage regulator power down
 - ADC power down
 - Trigger
 - To be decided be trigger group
 - Misc.
 - AsAd temperature, board id, pad id, presence detection
 - "Spy" mode
 - Power?

- To InBo
 - Master clock
 - Timestamp information
 - Trigger value from ASICs
 - To be decided by trigger group
 - Trigger signal to Cobo
- To DAQ
 - Gigabit Ethernet
 - MSU
 - Gigabit Optical Coupler
 - ACTAR
 - Use same module for both projects, with slightly different firmware

Xilinx Starter Kit


• Virtex-5 LXT Gigabit Ethernet Development Kit

- ML505 Development Board
- Allows test of high-speed link to AsAd ADC
- Easy development of Gigabit Ethernet link (MSU) and fiber optic link (ACTAR)
- Virtex-5 LXT
 - No embedded PowerPC core
 - Otherwise similar in capability to Virtex-5 FXT

Functionality Discussion Items (Lolly)

- 1. Measure tensions & temperatures on the card; read & transmit where necessary
- 2. A means to test a number of functions, without AsAds being connected. Allow for a plug & play
- 3. Software means to image the slow control commands to verify the transmission up to CoBo.
- 4. Transmit a pulser (charge & time calibration) signal to the AsAd (Lemo) connection
- 5. Read/Write of memory containing key information about the board (not the data storage memory).
- 6. Transmit a pulser trigger to the AsAd. connection
- 7. Transmit the temperature readings from AsAd connection
- 8. Transmit the SPY readings from AsAd to inspection points connection
- 9. Sum of the multiplicity from the 4 AsAd (possibly via the FPGA) connection
- 10. Receive the Stop SCA to transmit to the 4AsAd via the FPGA connection
- 11. Transmit the power to the AsAd cards connection
- 12. ADC ins/outs connection
- 13. Grounding connection
- 14. Clock, Reset etc connection
- 15. The system should allow to have part or all of the AsAd AGET not functioning/switched off.
- 16. The system should allow having less then 4AsAd plugged in
- 17. FPGA functions
 - A. Configure the AGETs parameters
 - B. Read the AGETs parameters
 - C. Automatic cell normalisation routines
 - D. Calculate/establish which channels that need to be read for a given hit register (selective-read-out).
 - E. Transmit to the multiplicity unit the structure of the event from the hit register.
 - F. Per channel & Per signal
 - a) Charge normalisation (optional?)
 - b) Stamp the time of each signal
 - c) Dynamic or Static base-line calculation
 - d) Base-line subtraction
 - e) Zero removal
 - f) CFD time extraction (optional)
 - g) Pulse-height extraction (optional)
 - h) Detection of pile-up or unwanted signals (optional?)
 - i) Re-Order the channels to have a geometrical order (i,j) (optional)

Proposed Timeline

(Note: NSCL fiscal year begins in October)

Contingent upon: 1) Lab allocation of Nathan's effort to project 2) Prompt definition of system specifications