ACTIVE TARGET DETECTORS FOR NUCLEAR STRUCTURE STUDIES WITH EXOTIC BEAMS

present and next future

Wolfgang Mittig Workshop on Detectors PNNL May 2012

Why an Active Target-TPC?

 Nuclear Structure Investigations of Exotic Nuclei with Secondary Beams

1) from normal kinematics to inverse kinematics

Normal kinematics versus inverse kinematics

Example: d(³²Mg,³³Mg)p gs,100keV

2) Beam Intensity ~10⁻⁹ with respect to stable beams

NSCL	National Superconducting Cyclotron Laboratory at Michigan State University					
	Find People Search NSCL: Go Reaccelerated beam yields					
Our Lab	Reaccelerated beam yields					
Science	Use this form to calculate the minimum energy, maximum energy, and approximate yield for					
Technology	reaccelerated beams from ReA3.					
Education	Enter Isotope: A 32 Z 12 (Calculate)					
Outreach	Minimum energy per nucleon: 3.00e-1 MeV/u					
FRIB	Maximum energy per nucleon: 4.74e+0 MeV/u Yield: 3.00e+3					
Community						
Experimenters Stopped and reaccelerated	Because of the absence of operational experience, the estimated yield is uncertain by up to an order of magnitude.					
beams at NSCL (coming 2010)	Home · Find People · Sponsors · Site Index · About NSCL · Feedback					
Active Target Time Projection Chamber (AT-TPC)	MICHIGAN STATE					
Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN)	UNIVERSITY National Superconducting Cyclotron Laboratory					
Beam Cooler and Laser spectroscopy (BECOLA) endstation	Michigan State University 1 Cyclotron, East Lansing, Michigan 48824-1321 Phone 517-355-9671 © 2007 Michigan State Luiversity Board of Trustees					
High energy beam transport (PDF)	Registered: ISO 9001, ISO 14001, OHSAS 18001					
Reaccelerated beam yields						

Thick Targets without resolution loss: tracking of reaction vertex High detection efficiency: 4π

C.E. Demonchy, et al., "Maya: An Active-Target Detector for Binary Reactions with Exotic Beams", Nucl. Instr. Meth. A573, 145 (2007).

THOMAS ROGER, thesis sept 2009

 $T.Roger\ et\ al\ {}_{\text{PHYSICAL}\ REVIEW\ C\ 79,\ 031603(R)\ (2009)}$

Measurement of the Two-Halo Neutron Transfer Reaction ¹H(¹¹Li, ⁹Li)³H at 3A MeV

Experiment at Triumf-Isac 1-2*10^{3 11}Li/s

I.Tanihata et al., PRL 100, 192502(2008)

AT-TPC Collaboration

Specifications

AT-TPC Scientific Program. Table 1: Overview of the AT-TPC scientific program.

Measurement	Physics	Beam Examples	Beam Energy (A MeV)	Min Beam (pps)	Scientific Leader
Transfer & Resonant Reactions	Nuclear Structure	³² Mg(d,p) ³³ Mg ²⁶ Ne(p,p) ²⁶ Ne ^{66,,70} Ni(p,p)	3	100	Kanungo
Astrophysical Reactions	Nucleosynthesis	25 Al(³ He,d) ²⁶ Si	3	100	Famiano, Montes
Fusion and Breakup	Nuclear Structure	$^{8}\mathrm{B+}^{40}\mathrm{Ar}$	3	1000	Kolata
Transfer	Pairing	⁵⁶ Ni+ ³ He	5-19	1000	Macchiavelli
Fission Barriers	Nuclear Structure	199 Tl, 192 Pt	20 - 60	10,000	Phair
Giant Resonances	Nuclear EOS, Nuclear Astro.	⁵⁴ Ni- ⁷⁰ Ni, ¹⁰⁶ Sn- ¹²⁷ Sn	50 - 200	50,000	Garg
Heavy Ion Reactions	Nuclear EOS	106 Sn - 126 Sn, 37 Ca - 49 Ca	50 - 200	50,000	Lynch

- Detector will make use of the full range of beam energies and intensities • available at NSCL & FRIB
- Experiments with rare isotope beams continuously push the limits of low beam ۲ intensities and low cross sections
- AT-TPC will address these limitations by providing access to reactions at beam ۲ intensities as low as 100pps

Simulations

More generally, the aim is to develop a device that provides a resolution for nuclear structure studies in inverse kinematics with a resolution comparable to the one achieved in direct kinematics with high resolution spectrometers, together with highest efficiency and thick targets

Resolution of the recoil energy ~2% for fusion events.

- Proton track clearly visible and its properties can be measured.
- Care must be taken to prevent rejection as a "non-interacting" event.
 Prop: J.Kolata

Concept of Prototype AT-TPC: a half size simplified version test of critical components and low energy physics experiments

⁶He + α reactions at Notre Dame D.Suzuki et al.

- Alpha clustering & neutron correlation in $2\alpha 2n$ system
- Multiple channel recording

⁶He + α -> ⁶He + α [elastic, 2*n* exchange]

⁶He(2⁺) + α [inelastic]

¹⁰Be*, ⁹Be + n, ⁸Be + 2n [fusion, resonance, transfer]

Continuous energy scan

- Energy loss of beam in traversing the gas

⁷Li(*d*,³*He*)⁶He @ Twinsol^[1]

- 15 MeV
- 1 kpps in TPC
- ⁶He 90% ⁴He 10%

[1] F. Becchetti et al., NIM A 505, 377 (2003)

- Optimized for binary reactions & Minimize the data size
- Coaxial strips; 2-mm width x 90° sector
- •PCB by NSCL, micromegas by IRFU-SEDI

Resistive Micromegas He + $CO_2(10\%)$

Resolution charge collection of 6%

Resolution range of 4mm FWHM, or an energy resolution of 110keV FWHM for 5.5MeV Alphas

Resistive micromegas from Rui de Oliveira, Cern

D.Suzuki et al.: Nuclear Instruments and Methods in Physics Research A 660 (2011) 64-68

Tracking

Reconstruction of ⁶He

Reconstruction of ⁶He

Prototype Exp. ¹⁰Be+⁴He

AGET: Sampling Capacitor Array

AFTER-like readout

<u>Write phase:</u> Tdrift ≤ 512 / Fsampling <u>Read phase:</u> SCAcells = 512

P.Baron-IRFU

SCA: circular memory

General Electronics for TPCs: GET IRFU, GANIL, CENBG MSU, (RIKEN)

For different detectors

AT-TPC: ~10000channels

Data flow at 1000cts/s

 $512*10^{4}*10^{3}*2$

 $\sim 10^{10}$ bytes/s

=10Gbytes/s before reduction

IKAR-GSI

TACTIC: York-TRIUMF Collaboration

Mizoi et al MSTPC

CNS-Riken

Prototype AT-TPC at MSU

ANASEN Constraints of the second seco

AT-TPC at MSU

Fission TPC LLNL

Actar-Ganil-Saclay-CENBG

EL

Conclusion

- Operating Active Targets have already produced many results
- The AT under development will improve dynamics and resolution, and may be used for a broad range of studies (nuclear structure, nuclear astrophysics, reaction mechanism,...)
- If we reach the limit of straggling for the resolution, these very high efficiency detectors will allow high resolution experiments in inverse kinematics comparable to the one obtained with best spectrometers for direct kinematics, such as S800, SPEG, Raiden,...

 $K^{A} = K^{\infty} + K^{\text{surf}} A^{-1/3} + K^{\tau} ((N-Z)/A)^{2} + K^{\text{coul}} A^{2}/Z^{4/3}$

C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

⁶⁸Ni (Marine Vandenbrouk, E.Khan et al., 2011)

⁶⁸Ni

Theory motivations

Prediction of Monopole strength in Ni neutron rich isotope

Study ISGMR and ISGQR in a neutron-rich Ni : ⁶⁸Ni

68Ni-preliminary

Mon Nov 14 09:45:25 2011

Full MC simulation of event +analysis

- Create a MC track with random kinematic conditions (at the moment 2-body reaction, given reaction, theta phi random)
- Produce tracks in the 6 dimensional space with dx,dy,dz,dtheta,dphi, dE around the values of step 1;
- find Chi2 minimum, decrease dx,dy,dz,dtheta,dphi,dE by factor 1.5; go to 2, repeat until window small (I use 6 iterations)

K.Tyler-WM

```
do i=1,128
              do j=1,128
              do k=1,128
                     if (pulsemeannor(i,j,k).gt.threshold.and.
     $
                         pulsemeanev(i,j,k,nev).gt.threshold) then
                            npad=npad+1
          dev2=(pulsemeannor(i,j,k)-pulsemeanev(i,j,k,nev))**2
          estimation of fluctuation just by electron statistics, noise
С
                                                                            and
gain
          snelec=pulsemeanev(i,j,k,nev)/gain(i,j) !number of primary electrons
          dsnelec=sqrt(snelec)*gain(i,j) !fluctuation valid if >>1
          dpulse=dgain*pulsemeanev(i,j,k,nev)/(gain(i,j)) !fluctuation due to
gain
          sig2=snoise**2+dsnelec**2+ dpulse**2
          dev2=dev2/sig2 !normalisation taking into account these three
contributions
          chi2 = chi2 + dev2
                            else
                            endif
              enddo
              enddo
              enddo
              chi2=chi2/float(npad)
       Obs: in the following, there is a calculation of the c.o.g in z direction before Chi2
```


nev

Chi**2

• dE/E

trajminnidpnoxysmalltri1mev.out 10:05:19 AM 12/12/09 0.06 0.04 0.02 0 dE/E -0.02 -0.04 -0.06 -0.08 0 50 100 150 200 theta

