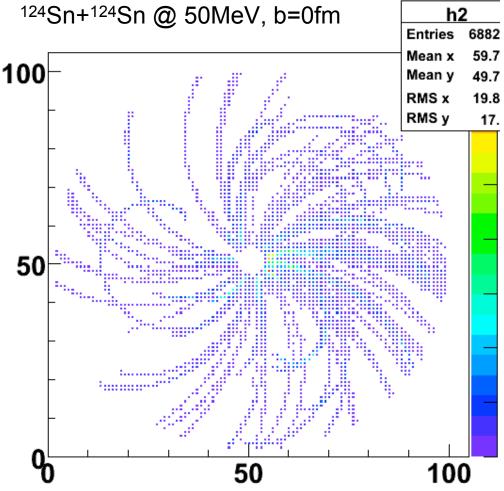
TPC Electronics

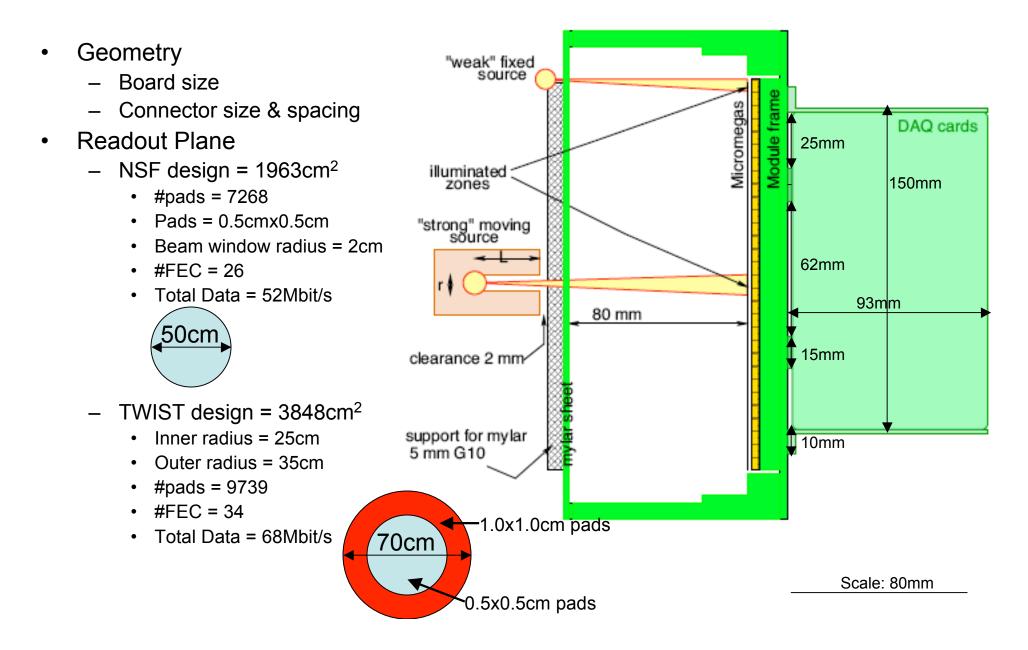
Abby Bickley April 28, 2008

FEC Design

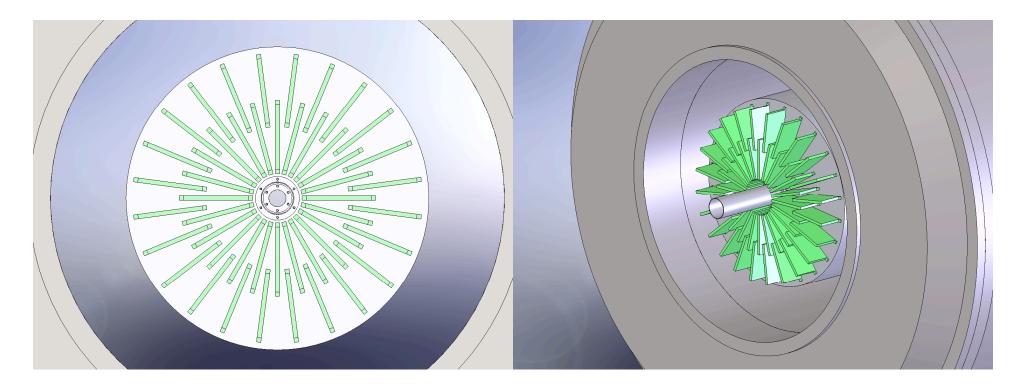
- Our Requirements:
 - 12 bit ADC
 - internal triggering
 - reduced number of buckets to be readout
 - 1kHz event rate
 - board layout must allow for minimum pad spacing (0.5cmx0.5cm)
- Designed & constructed at Saclay


Parameter	Value
Polarity of detector signal	Negative or Positive
Number of channels	72
External Preamplifier	Yes; access to the filter or SCA inputs
Charge measurement	
Input dynamic range	120 fC; 1 pC; 10 pC
Gain	Adjustable/(channel)
Output dynamic range	2V p-p
I.N.L	< 2%
Resolution	< 850 e-
	(Charge range: 120fC; Peaking Time: 200ns; Cinchannel. < 30pF)
Sampling	
Peaking time value	50 ns to 1 µs (16 values)
Number of SCA Time bins	511
Sampling Frequency	1 MHz to 100 MHz
Time resolution	
jitter	60 ps rms
skew	< 700 ps rms
Trigger	
Discriminator solution	L.E.D
Trigger Output/Multiplicity	OR of the 72 hit channel registers; Current output
Dynamic range	5% of input charge range
I.N.L	< 5%
Threshold value	4-bit DAC/channel + (3-bit + polarity bit) common DAC
Minimum threshold value	≥ noise
Readout	
Readout frequency	20 MHz to 25 MHz
Channel Readout mode	Hit channel; specific channels; all channel
SCA Readout mode	511 cells; 256 cells; 126 cells
Test	
calibration	1 channel / 72; external test capacitor
test	1 channel / 72; internal test capacitor (1/charge range)
functional	1, few or 76 channels; internal test capacitor/channel
Counting rate	
ASIC level	< 1 kHz
Power consumption	
Channel Asic	< 10 mW / channel
Packaging	Ceramic or plastic
Temperature	ambient

FEC Design


- Our Questions:
 - Where does zero-suppression occur? In the FEM? Prefer early, but must be after trigger decision
 - What are the T2K card dimensions? (14cmx25cmx2cm => where did these numbers come from?)
 - What type of connectors interface with the pad plane?
 - Do After+ requirements in March 28 document match our needs? Have these parameters changed in the past month? (see previous slide)

FEC: Rate Requirements


- Required FEC rates:
 - 1kHz trigger rate
 - 43% pad occupancy
 - 0.3% time occupancy (511 bins)
 - 0.7% time occupancy (128 bins)
 - Assumptions
 - 72 chan per ADC
 - 4 ADC per FEC
 - 128 time bins
 - Per event data volume:
 - Assume zero suppressed
 - (72*0.43)*(128*0.01)*4*1000*
 12 = 2 Mbit/s/FEC
 - Must add additional x10 to account for signal smearing
 - No zero suppression
 - 72*128*4*1000*12 = 440 Mbit/s/FEC

FEC: Physical Constraints

FEC: Physical Constraints

Assume: FEC width = 1cm TWIST dimensions Result: 48 cards arranged in groups of 24 minimum separation 7.5mm* does not allow FEM bridge

FEM: Design Requirements

- Our Requirements:
 - Assume 6 FEC per FEM => 12 Mbit/s
 - #FEM = 6 (TWIST geometry)
- Our Questions:
 - Why can current T2K FEM design not go above a rate of 10Hz? => this appears to be due to the programing of the FPGA.
 - Is data compression or zero suppression occurring during the readout of this memory?
 => according to the numbers in the FEM Design Notes the estimated max rates are based on empty events => What will be the effect of real data?
 - What functionality is included in FPGA?
 - Issue with FPGA to Memory storage & readout; we would like to achieve 1kHz need to examine Santiago Meeting slides to understand if proposed modifications are capable of achieving this and if they are the best method?
 - Can we transfer the zero suppression to the FPGA in the FEM?
 - What readout and time stamping scheme do we prefer? (evaluate continuous readout proposal & other options)
 - Define the mechanical connection between the FEC & FEM? Mounting the FEM perpendicular to 6 FEMs limits the geometrical arrangement.
 - If the FEC design remains the same with a modified AFTER+ chip, how far can the signal be sent?
 - 2-3 years required, is this reasonable?
- Bordeaux (Is there sufficient manpower for entire project???

FEM: Physical Constraints

- Consider 3 scenarios
 - 6xFEC per FEM (T2K design)
 - Direct connection btwn boards?
 - Short cable between boards?
 - 1xFEC per FEM
 - Direct connection btwn boards?
 - Short cable between boards?
 - Combine FEC and FEM on same board

DCC

- Our Questions:
 - Why is it necessary, particularly if it only can combine 2FEMs?
 - What is intrinsic rate limitation of commercial design?
 - Is the manufacturer and hardware reliable?
 - What is a realistic estimate of amount of time required to program the card; will this be done as a collaboration or individually?
 - 2-3 years required?
 - Designed & constructed Ganil (???)

Protection Circuit

- Provides interface between pads & FEC
- What details should we consider?
- How much space should be allowed?