

A program for the study of reaction mechanisms in the *GeV* range Instrumentation ACTAR meeting Bordeaux – Gradignan 16th of June, 2008

Jean-Éric Ducret, Spallation group CEA-Saclay, Institut de recherche sur les lois fondamentales de l'univers (IRFU), Service de Physique Nucléaire

R³B multi-track detector: first thoughts

• Needs for a new multi-track detector

- \rightarrow Wider spatial distribution of the fragments at the exit magnet
- \rightarrow Vertical drift of the primary electrons required for higher resolutions
- \rightarrow MUSIC 4 detector cannot be used for R³B for a complete coverage of the final-state phase space

Time-projection chamber

- \rightarrow 3D-tracking of multi-particle events
- \rightarrow Cheapest solution for such a detector

Parameters

- \rightarrow H = 0.8 m, L = 1.2 m, W = 3 to 4 m
- $\rightarrow \sigma_{\rm x} = 100 \ \mu m$
- \rightarrow 1 main direction for the fragments with small track angles
- \rightarrow Large dynamics of the signals \rightarrow two gas amplifications
- \rightarrow 5 samplings for low Z fragments, 4 samplings for high Z fragments

R³B time-projection chambers

TPC electrostatics:

• **MUSIC 4:** horizontal drift of the primary electrons

• New TPC for protons & alphas: vertical drift

MUSIC 4 sampling scheme

4 **PC**: Proportional counters (high gas amplification) → low Z fragments

3 IC: ionisation chambers (low gas amplification)

→ higher Z fragments

New TPC

3 rows of high gas amplification MicroMegas equipped with pads for charge division

lrfu

œ

saclay

lrfu

 (\mathbf{A})

New R³B TPC parameters

saclay + MicroMegas gas amplification

- \rightarrow Well known technology in Saclay/IRFU, rather inexpensive
- \rightarrow Use of resistive & capacitive amplification layers to spread the primary signals on at least three pads in order to
 - Reduce the number of readout channels
 - Obtain a position resolution independent of the drift length
 - Decrease the probability of discharges of the micromesh

(e.g. M. Dixit et al., NIM A518, 721(2004), NIM A566, 281 (2006))

 \rightarrow Will allow a direct measurement of the drift time on the pads

+~ 3000 channels (pads)

- \rightarrow Discrete electronics for the pre-amplification/amplification
- → No requirement for a large development (ready-to-use solutions)
- \rightarrow Not very expensive, will allow for possible evolution

+Flash-ADC readout

→ No big constraints on track density and pile-up, counting rate ≤ 1kHz → 40 MHz sampling, 10-12 bit coding

R³B MUSIC 4

• Track densities

lrfu

 (\mathbf{e})

Minimum distance between two fragments of a spallation event in MUSIC 4:

Probability that two tracks are closer

than 10 mm in X or Y: < 10⁻³

Probability that two tracks are closer

than 10 mm in X & Y: $< 10^{-4}$

Number of tracks

< N(track) > ~ 3

Readout & coding

Discrete amplification: The Antioche preamplifier card

- → Experience from other projects (DEMIN, KABES), FAMMAS module
- → Same modules for MUSIC4 & the new TPC
- → Tested in ion beams with small MicroMegas tracker prototypes in April 2008 at GSI

→ This will allow to use them, perhaps with different shaping time, to build high-position resolution beam trackers for R³B (thin entrance

windows, low pressure, MicroMegas amplification)

lrfu

œ

saclay

