

saclay

Large Bulk Micromegas for the T2K/TPC

A. Delbart : CEA-Saclay/DSM-IRFU Within the T2K/TPC Collaboration

« bulk » Micromegas mesh integration @ CERN/TS-DEM-PMT

Module on calibration test bench @ CERN

saclay

Dutline

- Micromegas : principle and standard technologies
- What is the « bulk » Micromegas and what is it for ?

 3 years of R&D and R&T towards large « bulk » Micromegas read with AFTER FEE for the TPCs of T2K/ND280 near detector

 ✓ The T2K/TPC « bulk » Micromegas modules
 ✓ Performances with AFTER FEE : Noise, 55Fe X-ray spectrum, Micromegas gain, sparking rate, and cosmic tracks reconstruction

• Production of 84 Micromegas Modules @ CERN

 \checkmark Towards a high quality production

✓ Calibration of Micromegas modules : uniformity of Gain and 5.9 keV energy resolution over the Micromegas active area (1726 channels)

Conclusions & current bulk Micromegas developments

R&D InGrid (within the european R&D program EUDET)

Micromegas integration within the pixels sensor by post-processing of the Si wafers Al grid, 0.8 μ m thick, accurately positionned with respect to the pilars and pixels

Some Micromegas technologies commonly used in physics experiments NA48/KABES station

Beam Killer d=5cm 1160 mm 40x40 cm² Act. area Fan-Out 600 mm

Solder mask pillars On PCB 3 mm thick Ni electroformed mesh 500 LPI Gap 100 μm (or greater) Lower pitch available : up to 1500 LPI

Drawback of these technologies :

- "large" dead zones around active area + delicate assembly due to the mesh frame
- gap irregularities in corners : amplification gap is obtained only when mesh HV is applied (Elec. Force)

High voltage

connections

The « bulk » micromegas

 \checkmark The « stretched » woven micromesh is laminated with the top pyralux layer

 \checkmark UV exposure through the transparent areas of the mask (border+pillars) and chemical development of the unexposed areas makes the « bulk » micromegas

\checkmark The woven micromesh is locally encapsulated between the 2 layers of insulating material

✓ T2K/TPC : 2 mm wide border on the edges of the PCB and 20712 spacers

CEA DSM Irfu A. Delbart (alain.delbart@cea.fr) / Large bulk Micromegas for the T2K/TPC (ACTAR Workshop, CENBG, Gradignan, june 17th 2008)

A. Delbart (alain.delbart@cea.fr) / Large bulk Micromegas for the T2K/TPC (ACTAR Workshop, CENBG, Gradignan, june 17th 2008)

Key features of T2K/TPC « bulk » Micromegas

MICROMEGAS MODULE DIMENSIONS	342,3 x 359,1 mm ²
Number of pads (per module)	1726
Pad dimensions	6.85 x 9.65 mm ²
Mesh material	Stainless Steel 304L
Mesh pitch and thickness	63 μm - 2x18 μm (20% less after lamination)
Insulating material	Pyralux PC 1025 (DuPont)
Gap	128 µm
Signal typical duration	~100 ns
Pillars (mask) on a pad	400 µm x 12
Pad (thickness)	CU with Ni/Au coating (~25 μm)
Interpad	150 μm
PCB	Halogene free FR4
PCB thickness	2.2 mm (+/-0,1 mm)
PCB internal layers	2 (one routing, one shielding layer)
Operating Gain	1000 at -345 V
Maximum Voltage	~ - 400 V
"Natural" Sparking rate (cosmics in 1cm drift)	0.1/hour at gain=1000
Typical S/N with AFTER FEE @ 1000 gain	~300 (5.9kEV X-ray), >100 (MIP)
Energy resolution (55Fe)	18-20% FWHM
Typical Gain non uniformity over 1726 pads	~2,7 % r.m.s
Space resolution	~600 µm at 1m drift length

A. Delbart (alain.delbart@cea.fr) / Large bulk Micromegas for the T2K/TPC (ACTAR Workshop, CENBG, Gradignan, june 17th 2008)

The T2K/TPC Micromegas anode PCB

Irfu CCC saclay

A T2K/TPC bulk Micromegas before final cutting

Irfu CCC saclay

A. Delbart (alain.delbart@cea.fr) / Large bulk Micromegas for the T2K/TPC (ACTAR Workshop, CENBG, Gradignan, june 17th 2008)

Very few access to modules : High quality & reliability of Micromegas is required Mechanics : the 12 Micromegas micromesh planes should be aligned within 0,1 mm Electric field : the 12 Micromegas micromesh should be @ same HV (within 0,1 V) Gain Vs mesh HV uniformity from a modules to another is required (within FEE performances) FEE design to minimize HV drop (spark) & capable of maintaining HV if local short-circuits occur

MM Module integration on TPC readout plane

Cross section of the 2 Micromegas detectors mounted on the Readout plane (Y direction)

Noise/capacitance measurement with AFTER FEE

Ref: P. Baron,X. De la Broise,E. Delagnes, E. Virique Energy range : 120 fC /peaking time : 100 ns / SCA sampling freq. : 50 MHz

Gain & sparking rate Main constraints for the T2K/TPC: non-flammable, low transverse diffusion for small B, operation close to the maximum drift velocity and minimization of the effect of impurities baseline T2K/TPC gas : Ar+2%C₄H₁₀+3%CF₄ u. Transv. Diff. 240 μm/cm^{1/2}, drift velocity 6,5 cm/μs @ 200V/cm (Magboltz & measured on harp cage) Sparking rate Vs Gain Gain Vs V_{mesh} (Cosmics in 7 mm drift) Gain 10 (h⁻¹) Ar/iC₄H₁₀/CF₄ (95%/2%/3%) Ar/iC₄H₁₀/CF₄ (95%/2%/3%) saclay <0,1 spark/h 10 10^{4} For Gain<1000 T2Kn2 (2005, 95 μm gap) • MMO-007 (2006, 128 μm gap)

 Good Gain uniformity from one Module to another (to be confirmed on production)
 The T2K/TPC will be operated at moderate gas gains of about 1000 where spark rates / module are sufficiently low (< 0.1/hour). TPC dead time < 1% achievable.

Micromegas Module tests on HARP TPC (2007)

A. Delbart (alain.delbart@cea.fr) / Large bulk Micromegas for the T2K/TPC (ACTAR Workshop, CENBG, Gradignan, june 17th 2008)

Event display of tracks in HARP TPC @ CERN

Attenuation length in Ar+2%isobutane+3%CF₄ measured greater than 30 m

Cosmic rays in the TPC

15 GeV/c p-Pb interactions in front of the TPC

CEA DSM Irfu

(2) « forced » sparking test bench : « burn-in » of the detector to burn dusts and smooth tiny asperities of either micromesh or copper pad
 > Mesh HV is increased by 10 V steps up to 900-950 V, in dry air, detector is in a controlled sparking operation at each step (Sparking rate measurement)

3 Calibration test bench : full pad per pad calibration with gain, PRF, cross-talk, 55Fe 5.9 keV resolution and sparking rate measurements

1726 pads 55Fe source Scan in ~ 12 hours Map of the gain (mean value) NO Ę 45 60 Charge 40 50 40 35 30 30 20 25 10 20 15 mapMean 1725 Entries 10 Mean x 17.51 23.78 Mean y RMS x 10.38 RMS v 13.81 0 20 25 30 35 15 column HV pads (inactive)

Gain variation: 2.7 %

Status of bulk MM & Module production (8/month)

- 8 bulk Micromegas produced, with NO faulty pads (+8 june 20th)
- Module assembly and calibration just began ⇒ goal of 48 (2 TPCs) in march 2009

T2K TPC - bulk MM & MM Module Production (June, 16th, 2008)

Batch #0&1 : 34x36 cm2, 1728pads 6,875x9,685 mm2, Multi-pass cleaning, Ni/Au Cu, with BFM, Φ 0,4 mm mask openings																
PCB ref.	PCB fab. Date	PCB thickness e / bending b	pad Cu thickness	PCB Q/C	bulk MM fab. Date	mesh batch	nb. of faulty pads	Global current @ 600V	Mod.	Stiffener	Assembly Date	mesh-gasket surface metrology	"burn-in" max HV current	Gain Non uniformity (rms)	5,9 keV 55Fe FWHM	comments
T2K-MM001	04/04/08	2,137 mm +0,052/-0,091	28 µm	ОК	05/05/08	batch 1	0	5 nA	MOD-001	552/001	10/06/08	19,496 mm +0,046/-0,016	13/06/08 950 V 2 nA			ready to calibrate
T2K-MM002	04/02/08	2,178 mm +0,043/-0,063	28 µm	ОК	14/02/08 Φ0,3 mm mask open.	Sefar	0		MOD-002	V1, n°	18/02/08		19/02/08 970 V 2 nA	2,70%	18%	bad resolution at centering pin location
T2K-MM003	04/04/08		25 µm	1 opened												rejected
T2K-MM004	29/04/08		39 µm	1 opened												rejected
T2K-MM005	29/04/08		23 µm	2 opened												rejected
T2K-MM006	29/04/08	2,190 mm +0,050/-0,027	36 µm	ОК	06/05/08	Batch2	0	4 nA	MOD-006		week 26					ready to assemble
T2K-MM007	29/04/08	2,216 mm +0,033/-0,020	44 µm	ОК	06/05/08	Batch2	0	5 nA	MOD-007		week 25					ready to assemble
T2K-MM008	29/04/08	2,163 mm +0,071/-0,063	37 µm	ок	05/05/08	Batch1	0	3 nA	MOD-008		week 26					ready to assemble
T2K-MM009	29/04/08	2,181 mm +0,028/-0,021	33 µm	ок	05/05/08	Batch 1	0	4 nA	MOD-009		week 26					ready to assemble
T2K-MM010	29/04/08	2,212 mm +0,026/-0,029	24 μm	ок	07/05/08	Batch2	0	4 nA	MOD-010		week 26					ready to assemble
T2K-MM011	29/04/08	2,137 mm +0,058/-0,065	26 μm	ок	07/05/08	Batch2	0	5 nA	MOD-011		week 27					ready to assemble

Bulk MM produced by O. Pizzirusso (CERN/TS-DEM-PMT), Module assembly & calibration by T2K/TPC Europe

Conclusions

✓ The bulk Micromegas technology is well adapted to build large segmented (>m²) readout plane surfaces : few % dead zone (in&between modules), simple design

 \checkmark The « bulk » Micromegas is close to be a mature technology

• Well defined & under control manufacturing process, very high quality insulation between mesh and anode PCB, seems robust & reliable, should be able to be industrialized

• All in one « cheap » detector : T2K/TPC bulk micromegas cost ~1,15 k€

800 € (PCB+mesh integration) + 130 €(connectors soldering + mesh stretching) +120 €(mesh) +100 €(connectors)

- Typical reproductible performances
 - Iow « natural » sparking rate : <0,1 spark/h (@1000 gain)</p>
 - > 5.9 keV FWHM resolution : ~ 20 %
 - > Gain uniformity over the bulk micromegas surface : \sim 3% r.m.s

✓ 84 bulk Micromegas modules are under production by T2K/TPC (12 months)

✓ Possible design parameters : up to 600 LPI mesh, current max size limited by anode PCB (~400x500 mm²) to ~1000x550 mm², <100 µm Amp. Gap to be tested

Current Bulk Micromegas developments

✓ Bulk Micromegas was first used for neutron spectroscopy applications (CEA/DEMIN detector)

saclay

- ✓ Class12 @Jefferson lab, USA : prototypes under study :low material budget detector (0,1 mm thick PCB), cylindrical shape (\$500 mm)
- ✓ Super LHC/ATLAS Muon chambers upgrade : 5 kHz/cm^2 flux, ~2 m² ch. , 100 µm/5 ns resolutions
- ✓ ILC/DHCAL : on-detector ASICs, 1cm² pads, 35.10⁴ channels, prototype beam tests in august
- ✓ ILC/TPC : 4T magnetic field, high flux, <10⁻³ ion backflow, <50 µm resolution @ short drift distance (resistive foil R&D), very high readout electronics density (>10⁶ channels)

CEA/DEMIN)

SLHC/ATLAS Muon ch. (CERN-ATLAS)

ACTAR ? ...

CEA DSM Irfu

Backup slides

TheTokai to Kamioka (T2K) experiment

Micromesh electron transparency

MM catastrophic failure strategy

- Aim : operate the TPC without distortion of the electric field in case faulty pads (frequent sparking or short-circuit) occur between 2 "Repair Opportunity"
 Strategy :
- CEO saclay
- 1/ demanding module quality selection for very low failure probability2/ study of detector failure modes with long duration operation tests3/ Implement & test Pad polarization/protection circuits (B&C) on test FEC

A. typical circuit

used on Harp setup Shutdown HV if problem Need of a Wire grid

B. Few pad/mesh shorts

Used on Compass but need HV R and C if permanent shorts; Let current from HV flow as long as acceptable $R=100 M\Omega \rightarrow I=4 \mu A / pad$

Ref: D. Calvet