

A program for the study of reaction mechanisms in the GeV range Physics program ACTAR Meeting Bordeaux - Gradignan 16th of June, 2008

Jean-Éric Ducret, Spallation group CEA-Saclay, Institut de recherche sur les lois fondamentales de l'univers (IRFU), Service de Physique Nucléaire

CEA DSM IRFU

(A)

Experimental method of investigation

saclay • Energy range ~ 1 GeV per nucleon

 \rightarrow nucleon – nucleon collisions as the dominant process for energy deposition in the target / projectile nuclei

Inverse kinematics

→ 1 *GeV* energy + target / projectile mass asymmetry allow for a localisation of the CoM low-energy products at forward angles → No detection threshold, especially for heavy residues

Coincidence measurements

→ Low CoM energy products \approx de-excitation fragments of the projectile → Coincidence measurements of light particles & heavy residues allow for mass / charge / energy balances to estimate the violence of the collision → study of the mechanisms with the excitation of the nuclei

Detection

→ High detection efficiency of neutrons & charged particles

→ ~ 100 % geometrical efficiency for fragments of charge ≥ 3

16th of June, 2008 CEA DSM IRFU - Jean-Eric Ducret - ACTAR meeting , Bordeaux - Gradignan

16th of June, 2008 CEA DSM IRFU - Jean-Eric Ducret - ACTAR meeting, Bordeaux - Gradignan

Physics program of the spallation group

saclay • Experiments in Cave C of GSI

 \rightarrow S304: Study of the spallation of ²⁸Si+p & ¹³⁶Xe+p at 1 GeV

 \rightarrow S293: Study of the fission channels of spallation with the excitation energy of the prefragment and with the fissility parameter of the projectile (238U, 208Pb & 181Ta at 1 GeV)

• Spallation experiments at R³B

- \rightarrow Coincidence measurements of ²⁰⁸*Pb*+*p* & ²³⁸*U*+*p* at 1 *GeV*
- \rightarrow *A*+*He* & *A*+*C* for a comparison with *A*+*p* at the same CoM energies
- **R**³**B** \rightarrow Kinematics reconstruction at the target point
 - Fission experiments at R³B
 - → Coulomb excitation of the projectile which leads to fission
 → Study of the low-energy fission of radioactive actinides

16th of June, 2008 CEA DSM IRFU - Jean-Eric Ducret - ACTAR meeting, Bordeaux - Gradignan

œ

Low-energy fission studies

- Actinide secondary beams from the fragmentation of ²³⁸U
 - Electromagnetic fission of the fragment in the Coulomb field of a heavy target (Pb / Au)
 - → Study of the fission-fragment distribution

œ

Low-energy fission studies

saclay • Additional information with R³B

- \rightarrow Mass & charge of the fragments
- \rightarrow Fission-fragments in coincidence
- \rightarrow De-excitation neutrons or charged particles in coincidence
- → Kinematics of the fission fragments
- Well defined fissioning system (A , Z , E^*)
- Mass & charged splitting as a function of \boldsymbol{M}_n or \boldsymbol{E}^*
- Ternary fission ?
- For all nuclei below ²³⁸U

Fragment mass distributions in ternary fission of ²⁵²Cf with ⁴He and Be as the light charged particles. From F. Gönnenwein *et al.*, Nucl. Phys **A734** (2004) 213

R³B GLAD magnet GSI Large Acceptance Dipole

lrfu

œ

saclay

• R³B GLAD funding

→ 3.5 M€ from EU CNI contract
→ 1.5 M€ from the collaboration
→ ~ 2 M€ from Saclay (manpower)

- R³B GLAD built in Saclay
- \rightarrow Study started in 2001 (5th FP)
- \rightarrow 35 persons involved
- \rightarrow 30 *m.y* over 4 years
- Basic equipment of R³B
- Parameters
- $\rightarrow \int B.dl = 4.8 T.m$
- \rightarrow +/- 80 mr in V & H planes for neutrons & charged fragments
- To be delivered in 2012

(A)

saclay

Magnet acceptance definition & optimisation

<u>Parameters of the magnet:</u>

- Angular aperture +/- **80 mr** horizontally and vertically
- Transparency to neutrons & to transport of **1 GeV** proton with HI
- \rightarrow Very low fringe field at the target (< 25 mT)
- Free space: > 1 m from the target to the magnet, for detectors
- \rightarrow Active shielding

Final geometry after **optimisation**:

- Distance from the target to the magnet entrance = **1.450 m**,
- A horizontal angle of the beam direction with respect to the magnet axis = 14°
- Vertical and horizontal angles of the coils = **5**° & **18.6**°
- Simpler geometry without additional winding
 (as in the first drawings) → less expensive, less risky