8.311: Electromagnetic Theory Final Exam 5/12/05

Time: 9:30-11
Your Name: \qquad

1. Coaxial transmission line.

Consider a half-infinite coaxial cable made of a cylindrical conducting shell of inner radius a and a wire of radius b on the axis inside, connected at the end to a source of voltage $V(t)=$ $V_{0} \cos \omega t$. The frequency ω is such that only the TEM mode is excited: $\omega \ll c / a, c / b$.
a) [10pt] Find the EM fields $\mathbf{E}(\mathbf{r}, t), \mathbf{B}(\mathbf{r}, t)$ at a distance x from the voltage source.
b) [10pt] Find the energy flow by evaluating the flux of Poynting vector through the cable cross-section at a distance x from the voltage source. Show that at $x=0$ the energy flux has the form $Z(V(t))^{2}$. Find Z, the transmission line impedance.
2. EM waves in a gas of polar molecules.

The response of a polar molecule to a time-dependent electric field $E(t)$ is described by an equation

$$
\begin{equation*}
\dot{\mathbf{d}}=-\frac{1}{\tau}\left(\mathbf{d}-\alpha_{0} \mathbf{E}(t)\right) \tag{1}
\end{equation*}
$$

where \mathbf{d} is the molecule average dipole. Here α_{0} is static polarizability, and τ is the relaxation time parameter.
a) [10pt] Consider the response of a single molecule $d(\omega)=\alpha(\omega) E(\omega)$ to a time-dependent field $E(\omega)=E_{0} \exp (-i \omega t)$. Find the complex polarizability $\alpha(\omega)$. Plot the real and imaginary part $\alpha^{\prime}(\omega)$ and $\alpha^{\prime \prime}(\omega)$.
b) [10pt] For a monochromatic EM wave of frequency ω, find the wavevector k. Use complex permittivity $\epsilon(\omega)$ obtained from $\alpha(\omega)$ in the dilute gas approximation $(n \alpha \ll 1, \epsilon(\omega) \approx 1$).

Find the EM absorption length L as a function of frequency. Sketch the $L(\omega)$ dependence.

3. Dipole radiation.

Consider a nonrelativistic electron moving along the z axis as $z(t)=a \cos \omega_{0} t+b \cos 2 \omega_{0} t$. The EM field at a large distance R away from the origin can be obtained from the dipole radiation field $\mathbf{E}_{r}=\frac{1}{R c^{2}} \mathbf{n} \times(\mathbf{n} \times \ddot{\mathbf{d}}), \mathbf{B}_{r}=\mathbf{n} \times \mathbf{E}_{r}$.
a) [10pt] Find the time-averaged radiated power angular distribution $d P / d o$. Use the angle θ between the radiation direction \mathbf{n} and the z axis.
b) $[10 \mathrm{pt}]$ Find the total time-averaged radiated power P.
c) $[10 \mathrm{pt}]$ Find the radiation frequency spectrum $d P / d \omega$.

4. Relativistic motion in parallel E and B fields.

Consider a relativistic electron moving in parallel E and B fields, $\mathbf{E}, \mathbf{B} \| \widehat{\mathbf{z}}$, spatially uniform and constant. Initial velocity of the electron is perpendicular to E and $B:\left.\left(p_{x}, p_{y}\right)\right|_{t=0}=\left(p_{0}, 0\right)$.
a) [10 pt$]$ Write down the relativistic equations of motion for electron momentum components. Show that $p_{x}^{2}+p_{y}^{2}$ is a constant of motion, and find the kinetic energy as a function of time.
b) [10pt] Find p_{x} and p_{y} as a function of time.
c) $[10 \mathrm{pt}]$ Determine the motion, find the electron trajectory $x(t), y(t), z(t)$.

