## FUN FACTS TO KNOW AND TELL

$$
\begin{aligned}
\int_{0}^{\infty} d x \frac{x^{n-1}}{e^{x}-1}= & \Gamma(n) \zeta(n), \quad \int_{0}^{\infty} d x \frac{x^{n-1}}{e^{x}+1}=\Gamma(n) \zeta(n)\left[1-(1 / 2)^{n-1}\right] \\
\zeta(n) \equiv & \sum_{m=1}^{\infty} m^{-n}, \quad \Gamma(n) \equiv(n-1)! \\
\zeta(3 / 2)= & 2.612375 \ldots, \quad \zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(3)=1.20205 \ldots, \quad \zeta(4)=\frac{\pi^{4}}{90}, \\
& \int_{-\infty}^{\infty} d x e^{-x^{2} / 2}=\sqrt{2 \pi}, \quad \int_{0}^{\infty} d x x^{n} e^{-x}=n!
\end{aligned}
$$

## LONG ANSWER SECTION

1. ( 10 pts ) Given

$$
T d S=d E+P d V-\mu d N
$$

show that

$$
\left.T \frac{\partial N}{\partial T}\right|_{V, \mu / T}=\left.\frac{\partial E}{\partial \mu}\right|_{T, V}
$$

Extra work space for \#1

## SECRET STUDENT NUMBER: STUDNUMBER

2. Consider a one-dimensional system of fixed number $N$ in a fixed length $L \rightarrow \infty$, with the partition function given by:

$$
Z=\operatorname{Tr} \exp \{-\beta H\}, \quad H=\int h(x) d x
$$

where $h(x)$ is the Hamiltonian density operator. After great effort, the correlation function is calculated,

$$
\Gamma\left(x-x^{\prime}\right)=\left\langle(h(x)-\epsilon)\left(h\left(x^{\prime}\right)-\epsilon\right)\right\rangle=\Gamma_{0} e^{-\left|x-x^{\prime}\right| / \lambda},
$$

where $\langle A\rangle$ denotes a thermal average, $\langle A\rangle=\operatorname{Tr} A e^{-\beta H} / \operatorname{Tr} e^{-\beta H}$, and $\epsilon=\langle h(x)\rangle$ is the average energy density.
(a) (5 pts) Calculate the fluctuation of the total energy,

$$
\sigma_{E}^{2}=\left\langle(H-E)^{2}\right\rangle, \quad E=\epsilon L,
$$

in terms of $\Gamma_{0}, T, N, \lambda$ and $L$.
(b) (10 pts) In terms of the same variables, what is the specific heat,

$$
C=\frac{d E}{d T} .
$$

Extra work space for \#2
3. ( 15 pts ) You have discovered a new species of spin-zero bosons called weirdons which you can confine to a one-dimensional motion. Weirdons interact very weakly with one another and are unusual because of their dispersion relation,

$$
\epsilon_{p}=A \sqrt{p}
$$

(A normal dispersion relation would be $\epsilon_{p}=p^{2} / 2 m$ ).
You have a gas of weirdons with density (number per unit length) $\rho$. To what temperature must you cool the weirdons to get Bose condensation?

Extra work space for \#3

## SHORT ANSWER SECTION

4. (2 pts each) Two non-interacting electrons occupy two single-particle energy levels $\epsilon$ and $-\epsilon$.
(a) What is the average energy when $T=0$ ?
(b) What is the entropy when $T=0$ ?
$\qquad$
(c) What is the average energy when $T \gg \epsilon$ ?
$\qquad$
(d) What is the entropy when $T \gg \epsilon$ ?
5. (2 pts each, 8 pts total) You are performing a calculation to determine the thermodynamically optimum concentration $x$ of some chemical species. For each question circle either maximize or minimize, and one of the quantities $S, F, P, G$, where $S$ is the entropy, $F=E-T S$ is the Helmholtz free energy, $P$ is the pressure and $G=\mu N$ is the Gibb's free energy.
(a) If the system is kept at fixed temperature, pressure and particle number (the volume can adjust to match the desired pressure), you should (maximize/minimize) the quantity $(S, F, P, G)$.
(b) If the system is kept at fixed volume, temperature and chemical potential (there is a particle bath and a heat bath), you should (maximize/minimize) the quantity $(S, F, P, G)$.
(c) If the system has fixed particle number, volume and temperature (heat bath only), you should (maximize/minimize) the quantity ( $S, F, P, G$ ).
(d) If the system is isolated at fixed energy, particle number and volume, you should (maximize/minimize) the quantity $(S, F, P, G)$.
6. (3 pts each) Consider a one-dimensional array of $N$ coupled oscillators lined up along the $z$ direction. The oscillators are allowed to move only in the $x$ and $y$ directions. Transverse waves move with velocity $c_{s}$. Let $C / N$ refer to the specific heat per oscillator.
(a) As $T \rightarrow 0$, the specific heat from phonons behaves as $C \sim T^{n}$. What is $n$ ? $\qquad$
(b) What is $C / N$ as $T \rightarrow \infty$ ?
7. (2 pts each) Consider a one-dimensional Ising model at temperature $T>0$. Label each of the following as true or false.
(a) In the exact solution there is no phase transition.
(b) In the mean-field solution there is no phase transition.
(c) In the mean-field solution, the critical exponents are the same as they would be for a two-dimensional model.
8. (2 pts each) Graph several isotherms on a $P$ vs. $V$ graph illustrating the characteristics of a liquid gas phase transition. The graph should include:
(a) An isotherm with $T>T_{c}$.
(b) An isotherm with $T=T_{c}$.
(c) An isotherm with $T<T_{c}$.
(d) Label the critical point.
(e) For the isotherm with $T<T_{c}$, label the coexistence points.


## SECRET STUDENT NUMBER: STUDNUMBER

9. ( 3 pts ) Two phase transitions will be of the same universality class if they have: (circle one)

- The same order parameters
- The same critical exponents
- The same Goldstone bosons
- The same dimensionality

10. (6pts) Consider a three-dimensional Ising model, where each spin can have $\sigma= \pm 1$, and nearest neighbor spins experience an attractive interaction, $H_{n n}=-J \sum_{i j} \sigma_{i} \sigma_{j}$. Each spin also experiences an interaction with an external field, $H_{B}=-\mu B \sum_{i} \sigma_{i}$. Plot $\langle\sigma\rangle$ as a function of the magnetic field $B$ (qualitatively) for isotherms with:
(a) $T=T_{c} / 2$
(b) $T=2 T_{c}$

