Democratic decay of ${ }^{6} \mathrm{Be}$ exposed by correlations

I.A. Egorova, ${ }^{1}$ R.J. Charity, ${ }^{2}$ L.V. Grigorenko,,${ }^{3,4,5}$ Z. Chajecki, ${ }^{6}$ D. Coupland, ${ }^{6}$ J.M. Elson, ${ }^{2}$
T.K. Ghosh, ${ }^{7}$ M.E. Howard, ${ }^{8}$ H. Iwasaki, ${ }^{6}$ M. Kilburn, ${ }^{6}$ Jenny Lee, ${ }^{6}$ W.G. Lynch, ${ }^{6}$
J. Manfredi, ${ }^{2}$ S.T. Marley, ${ }^{9}$ A. Sanetullaev, ${ }^{6}$ R. Shane, ${ }^{2}$ D.V. Shetty, ${ }^{9}$ L.G. Sobotka, ${ }^{2}$ M.B. Tsang, ${ }^{6}$ J. Winkelbauer, ${ }^{6}$ A.H. Wuosmaa, ${ }^{9}$ M. Youngs, ${ }^{6}$ and M.V. Zhukov ${ }^{10}$
${ }^{1}$ Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 Russia
${ }^{2}$ Departments of Chemistry and Physics, Washington University, St. Louis, Missouri 63130, USA.
${ }^{3}$ Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RU-141980 Russia
${ }^{4}$ GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
${ }^{5}$ Russian Research Center "The Kurchatov Institute", Kurchatov sq. 1, RU-123182 Moscow, Russia
${ }^{6}$ National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA.
${ }^{7}$ Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064, India
${ }^{8}$ Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
${ }^{9}$ Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008, USA.
${ }^{10}$ Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

(Dated: July 11, 2012. File: c:/latex/6be-s4/v8/6be-s4-8.tex)

Abstract

The interactions of an $E / A=70-\mathrm{MeV}^{7} \mathrm{Be}$ beam with a Be target was used to populate levels in ${ }^{6}$ Be following neutron knockout reactions. The three-body decay of the ground and first excited states into the $\alpha+p+p$ exit channel were detected in the HiRA array. Precise three-body correlations extracted from the experimental data allowed us to obtain an insight into the mechanism of the three-body democratic decay. The correlation data are in a nice agreement with a three-clustermodel calculation and thus validate this theoretical approach over a broad energy range.

PACS numbers: 25.10.+s, 23.50.+z, 21.60.Gx, 27.20.+n

Introduction. - The ${ }^{6} \mathrm{Be}$ system is located beyond the proton dripline and its ground and excited states all belong to the three-body $\alpha+p+p$ continuum. Moreover, the ground state also belongs to the so-called "true twoproton emitters" ; the systems for which one-proton decay is energetically prohibited and the two protons should be emitted simultaneously, see Fig. 1. However at larger decay energies, one expects the decay mechanism should eventually changeover to a sequential decay through the intermediate states in the two-body subsystem $\left({ }^{5} \mathrm{Li}\right.$ in the ${ }^{6} \mathrm{Be}$ case). Intermediate subsystems in the light twoproton emitters are often quite broad and for such broad intermediate states, the concept of "democratic decay" was proposed $[1,2]$. "Democracy" in this case means that no strong focusing in kinematical space is produced even if the intermediate states are accessible for decay; the decay mechanism remains essentially three-body in nature. The interplay and transition between the different decay mechanisms in three-body systems has been strongly debated and it is still not completely understood [2-8]. The location of the borderline between the three-body decay dynamics (true $2 p$ or democratic) and two-body dymnamics (sequential decay) is not known.

In the recent years there is a revival of interest in the ${ }^{6} \mathrm{Be}$ system $[7-11]$ with comparative studies to twoproton radioactive decay in ${ }^{45} \mathrm{Fe}$ [7], precise studies of correlations for the ground state [8], and the discovery of an "isovector soft dipole mode" in a charge-exchange reaction [11]. ${ }^{6} \mathrm{Be}$ is the lightest true two-proton-groundstate emitter and, being relatively easily accessible in experiments, should become a benchmark system for stud-

FIG. 1. The level and decay scheme for ${ }^{6} \mathrm{Be}$ and illustrations of possible decay mechanisms. The continuum states are labeled $\left\{J^{\pi}, E_{r}, \Gamma\right\}$
ies of true two-proton emission (two-proton radioactivity in heavier nuclei). In addition because of isopin symmetry, the two-proton correlations can shed light on the structure of the mirror neutron-halo nucleus ${ }^{6} \mathrm{He}[8]$.

In this Letter we report on studies of the ${ }^{6} \mathrm{Be}$ continuous spectrum up to a decay energy of $E_{T} \sim 10 \mathrm{MeV}$ (E_{T} is energy above the $\alpha+p+p$ threshold). The experimental high-statistics and high-resolution data provide a very detailed view of the evolution of the correlation patterns with excitation energy. This allows us to obtain insights into the mechanism of two-proton decay. The result is demonstration of the counterintuitive character of the evolution of the decay mechanism with excitation energy.
Experiment. - A primary beam of $E / A=150-\mathrm{MeV}$ ${ }^{16} \mathrm{O}$ was extracted from the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory at

Michigan State University with an intensity of 125 pnA. This beam bombarded a ${ }^{9} \mathrm{Be}$ target and ${ }^{7} \mathrm{Be}$ projectilefragmentation products were selected by the A1900 separator with a momentum acceptance of $\pm 0.5 \%$. This ${ }^{7} \mathrm{Be}$ beam had an intensity of $4 \times 10^{7} \mathrm{~s}^{-1}$ with a purity of $\sim 90 \%$ and impinged on a 1 -mm-thick target of ${ }^{9} \mathrm{Be}$ creating ${ }^{6}$ Be projectile-like fragments via neutron knockout reactions.
The protons and α-particles created following ${ }^{6} \mathrm{Be}$ decay were detected in the HiRA array [12]. For this experiment, the array consisted of $14 E-\Delta E[\mathrm{Si}-\mathrm{CsI}(\mathrm{Tl})]$ telescopes located at a distance 90 cm downstream from the target and subtended zenith angles from 1.4° to 13°. Each telescope consisted of a $1.5-\mathrm{mm}$ thick, double-sided Si strip ΔE detector followed by a $4-\mathrm{cm}$ thick, $\operatorname{CsI}(\mathrm{Tl}) E$ detector. The ΔE detectors are $6.4 \mathrm{~cm} \times 6.4 \mathrm{~cm}$ in area with each of the faces divided into 32 strips. Each E detector consisted of four separate $\mathrm{CsI}(\mathrm{Tl})$ elements each spanning a quadrant of the preceding Si detector. Signals produced in the 896 Si strips were processed with the HINP16C chip electronics [13].

The energy calibration of the Si detectors was obtained with a ${ }^{228} \mathrm{Th} \alpha$-particle source. The particle-dependent energy calibrations of the CsI detectors were achieved with $E / A=60$ and 80 MeV beams of protons and α particles selected with the A1900 separator.

Theoretical model. - The dynamics of the three-body $\alpha+p+p$ continuum of ${ }^{6} \mathrm{Be}$ is described by solving the inhomogeneous three-body Schrödingier equation for wavefunctions (WF) with the outgoing asymptotic

$$
\begin{equation*}
\left(\hat{H}_{3}-E_{T}\right) \Psi^{(+)}=\Phi_{\mathbf{q}} \tag{1}
\end{equation*}
$$

corresponding to an approximate boundary condition of the three-body Coulomb problem. The model is described in details in [8] and applied in different ways in [7, 11].
The source function $\Phi_{\mathbf{q}}$ for the reaction considered in this work is constructed in the approximation of a sudden removal of a neutron from ${ }^{7} \mathrm{Be}$ (transparent limit of the Serber model),

$$
\begin{equation*}
\Phi_{\mathbf{q}}=\int d^{3} r_{n} e^{i \mathbf{q} \mathbf{r}_{n}}\left\langle\Psi_{4} \mathrm{He} \mid \Psi_{7_{\mathrm{Be}}}\right\rangle, \tag{2}
\end{equation*}
$$

where \mathbf{r}_{n} is the radius-vector of the removed neutron and \mathbf{q} is the transferred momentum. The ${ }^{7} \mathrm{Be} \mathrm{WF}$ is constructed in the spirit of COSM approximation (e.g., [14]) as an "inert" α-core plus a neutron and two protons occupying $p_{3 / 2}$ and $p_{1 / 2}$ configurations with coupling $\left[l_{j}(\nu)\left[l_{j}\left(\pi_{1}\right) l_{j}\left(\pi_{2}\right)\right]_{J}\right]_{J_{7 \mathrm{Be}}}$:

$$
\begin{align*}
\Psi_{7_{\mathrm{Be}}} & =\Psi_{4 \mathrm{He}}\left(\alpha\left[p_{3 / 2}\left[p_{3 / 2}^{2}\right]_{0}\right]_{3 / 2}+\beta\left[p_{3 / 2}\left[p_{1 / 2}^{2}\right]_{0}\right]_{3 / 2}\right. \\
& \left.+\gamma\left[p_{3 / 2}\left[p_{3 / 2}^{2}\right]_{2}\right]_{3 / 2}+\delta\left[p_{3 / 2}\left[p_{3 / 2} p_{1 / 2}\right]_{2}\right]_{3 / 2}\right) . \tag{3}
\end{align*}
$$

Neutron removal populates the 0^{+}state in ${ }^{6} \mathrm{Be}$ for terms with coefficients $\{\alpha, \beta\}$ and populates the 2^{+}state for terms with coefficients $\{\gamma, \delta\}$. The ratios α / β and γ / δ control the spin contents of the source terms in Eq. (1).

FIG. 2. Experimental invariant-mass spectrum of ${ }^{6} \mathrm{Be}$ and the fitted theoretical result. Within this work the data points show experimental data, solid curve - the theoretical result, and gray histogram - the Monte Carlo simulation. The dotted curves show the contributions of 0^{+}and 2^{+}states to the theoretical spectrum. The arrows indicate the boundaries of the energy bins used in this work.

The sensitivity of the reaction to the structure of ${ }^{7} \mathrm{Be}$ is an interesting question by itself that will be discussed elsewhere. The differential cross section is expressed via the flux induced by the WF $\Psi^{(+)}$on the remote surface S

$$
\begin{equation*}
\left.\frac{d \sigma}{d^{3} k_{\alpha} d^{3} k_{p_{1}} d^{3} k_{p_{2}}} \sim\left\langle\Psi^{(+)}\right| \hat{j}\left|\Psi^{(+)}\right\rangle\right|_{S} \tag{4}
\end{equation*}
$$

The spectrum of ${ }^{6} \mathrm{Be}$ calculated with $\{\alpha, \beta, \gamma, \delta\}=$ $\{0.42,0.3,0.94,0.7\}$ is shown in Fig. 2. To compare to experimental data, the calculated multiply-differential cross sections were used in Monte-Carlo (MC) simulations of the experiment, taking into account the apparatus bias and resolution.

Complete energy-angular correlations. - Two-body decays are described by just two quantities - energy and width. For three-body decays one also needs at least two extra continuous degrees of freedom that in this work are the energy distribution parameter ε and the angle θ_{k} between the Jacobi momenta $\mathbf{k}_{x}, \mathbf{k}_{y}$:

$$
\begin{gather*}
\varepsilon=E_{x} / E_{T}, \quad \cos \left(\theta_{k}\right)=\left(\mathbf{k}_{x} \cdot \mathbf{k}_{y}\right) /\left(k_{x} k_{y}\right), \\
\mathbf{k}_{x}=\frac{A_{2} \mathbf{k}_{1}-A_{1} \mathbf{k}_{2}}{A_{1}+A_{2}}, \quad \mathbf{k}_{y}=\frac{A_{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right)-\left(A_{1}+A_{2}\right) \mathbf{k}_{3}}{A_{1}+A_{2}+A_{3}}, \\
E_{T}=E_{x}+E_{y}=k_{x}^{2} / 2 M_{x}+k_{y}^{2} / 2 M_{y}, \tag{5}
\end{gather*}
$$

where M_{x} and M_{y} are the reduced masses of the X and Y subsystems (see, e.g. Ref. [8] for details). If we put $k_{3} \rightarrow k_{\alpha}$, then the correlations are obtained in the "T" Jacobi system where ε describes the energy correlation in the $p-p$ channel. However, if we put $k_{3} \rightarrow k_{p}$, then the correlations are obtained in one of the "Y" Jacobi systems where ε describes the energy correlation in the $\alpha-p$ channel.
The calculated energy-angular distributions are in excellent agreement with the experimental data for both the 0^{+}and 2^{+}resonances, see Fig. 3. These correlation data for the two resonance states are also in agreement

FIG. 3. Complete energy-angular correlations for $0^{+}(\mathrm{a}, \mathrm{c})$ and 2^{+}(b,d) states of ${ }^{6} \mathrm{Be}$. Comparison of experiment and MC simulations for Jacobi "T" and "Y" systems (upper and lower rows, respectively). The data are taken for 0.5 and 1 MeV wide bins centered on the 0^{+}and 2^{+}resonance peaks, respectively.
with the recent results from $[7-9,11]$ and with the older data of $[1,15]$. Only the data of [10] were found to be inconsistent. However, compared to all these other data sets, the present data have the highest statistical significance and thus provide the best validation the theoretical model. In addition with the present high statistics data, we are able to explore the evolution of the correlations on and off resonance.

Evolution of energy distribution between two protons. - Fig. 4 shows the evolution of the distribution of relative energy between two protons with E_{T}. There is a the qualitative difference between the distributions for the 0^{+}[Figs. $\left.4(\mathrm{a}, \mathrm{b})\right]$ and 2^{+}[Figs. $\left.4(\mathrm{~d}, \mathrm{e})\right]$ states. In addition, the small- $E_{p p}$ region for $p-p$ motion becomes enhanced with increasing E_{T} for 0^{+}state. This result is unexpected as the p - p final state interaction (FSI) is generally considered to be a predominantly low-energy phenomenon, but this trend is also confirmed in the calculations. For the first time we can see the evolution of distributions in the transition-energy region [Fig. 4 (c)] characterized by strong $0^{+} / 2^{+}$state mixing. For the energy region covering the 2^{+}state and beyond [Fig. 4 (d)(f)], the energy distributions demonstrate stable shapes far beyond the 2^{+}peak [Fig. 4 (f)] a result again confirmed in the calculations.

Evolution of energy distribution between alpha and proton. - There is a wide spread belief that as soon as the intermediate state becomes energetically accessible, the decay mechanism changes over from three-body decay to a sequential decay through this resonance. To see what happens in reality, let us consider the energy correlation in the $\alpha-p$ channel, which should reflect the ${ }^{5} \mathrm{Li}$ groundstate resonance in the case of sequential decay.

We can see in Fig. 5 that at low E_{T}, the shapes of the energy distribution in the Jacobi "Y" system has a relatively broad bell-like profile typical for true $2 p$ decay [2].

FIG. 4. Evolution of energy distribution in the Jacobi "T" system (between two-protons) with the decay energy. The left and right columns show the energy ranges where the 0^{+} and 2^{+}states dominant.

However as E_{T} increases the profile first becomes significantly narrower. This narrowing happens exactly when the ${ }^{5} \mathrm{Li}$ ground-state resonance enters the decay window, Fig. 5 (c). The location of sequential-decay strength to the centroid of the ${ }^{5} \mathrm{Li}$ resonance, $E_{\alpha p}=E_{r}\left({ }^{5} \mathrm{Li}\right)$ and $E_{\alpha p} \approx E_{T}-E_{r}\left({ }^{5} \mathrm{Li}\right)$, where the concentration of strength might intuitively be expected, is indicated in Fig. 5 by large blue and small olive arrows, respectively. It seems that for $E_{T}<2 E_{r}\left({ }^{5} \mathrm{Li}\right)$, the availability of the two-body resonance for sequential decay does not lead to correlation patterns that one might consider typical of sequential decay with two peaks or a peak plus a shoulder. Sig-

FIG. 5. Evolution of the energy distribution in the Jacobi "Y" system (relative energy between alpha and one of the protons) with energy E_{T}. Arrows indicate the positions of the ${ }^{5} \mathrm{Li}$ g.s. resonance in the three-body energy window.

FIG. 6. Angular distribution in the Jacobi "Y" system for the $E_{T}=5.8-9 \mathrm{MeV}$ bin.
nificant evidence for such sequential correlations are only observed when $E_{T} \gtrsim 2 E_{r}\left({ }^{5} \mathrm{Li}\right)+\Gamma\left({ }^{5} \mathrm{Li}\right)$.

Let us now turn to the energy correlation at high E_{T} values $\left(5.8<E_{T}<9.0 \mathrm{MeV}\right)$, Fig. 5 (f). The ${ }^{5} \mathrm{Li}$ energy correlation is very evident here with peaks located at the energies indicated by the two arrows. However, if sequential decay is the only process here, then the angular correlations should be completely defined by angularmomentum coupling. The predicted angular distribution corresponding to sequential decay via $\left[p_{3 / 2} \otimes p_{3 / 2}\right]_{2}$ coupling (dotted curve) is compared to the corresponding experimental data in Fig. 6. In contrast to this prediction, the experimental distribution has a strong asymmetry with a focusing of the two protons at small relative angles. Technically such asymmetry cannot exist for pure sequential decay and must be connected with an interference between odd/even parity configurations (say of $\left[p^{2}\right]$ with $[s d]$ configurations in ${ }^{6} \mathrm{Be}$). Physically it is clear that the peak at $\cos \left(\theta_{k}\right) \sim-1$ is connected with $p-p$ FSI present in our realistic Hamiltonian [Eq. (1)].

FIG. 7. Experimental joint energy-angular distributions in the Jacobi "Y" system for the $E_{T}=5.8-9 \mathrm{MeV}$ bin.

A more complete picture of the decay is obtained by studying the joint energy-angular distribution of Fig. 7. This distribution contains regions clearly identifiable with $p-p$ and $\alpha-p$ FSIs and, in addition, a broad transition region. Each of these regions is responsible for roughly $1 / 3$ of the events and are also present in the theoretical distribution. This strongly suggests that all, or some, of these features are not associated with contamination from background $\alpha+p+p$ events which maybe associated with ${ }^{6}$ Be decay. Even at such a high excitation energy, the decay is therefore not purely sequential and the contributions of the different decay mechanisms are not possible to completely disentangle. The "democracy" of the decay is preserved in the sense that different parts of the kinematical space have comparable populations.

Discussion. - The mechanism of the three-body decays in nuclei is often discussed in terms of either the "diproton" or "sequential" decay mechanisms. The present data demonstrate two results which can be seen as paradoxical and reflect the complexity of the problem.
(i) Emission of a "diproton" is expected to be important for the lowest energies. In ${ }^{6} \mathrm{Be}$ there is a very clear indication that formation of the low-energy $p-p$ correlation is enhanced as the decay energy increases. It is also more pronounced in the excited 2^{+}state compared to the ground 0^{+}state.
(ii) In ${ }^{6} \mathrm{Be}$ the accessibility of the broad intermediate states in the energy window of the three-body decay first leads to what appears as a suppression of the sequential decay mechanism in favor of three-body democratic dynamics. Only at decay energies $E_{T} \gtrsim 2 E_{r}\left({ }^{5} \mathrm{Li}\right)+\Gamma\left({ }^{5} \mathrm{Li}\right)$ do the signs of sequential decay become visible in the correlation patterns. However even at such energies, the actual mechanism is a complex mixture of contributions of core- p and $p-p$ final state interactions which cannot be disentangled. Some indications for this decay complexity was found in [2] based on simplified theoretical models. Now we have a strong confirmation of this finding. This establishes the vaidity of democratic decay as an apropriate description of the decay mechanism in a much broader energy range than ever expected.

Conclusions. - High-statistics high-resolution threebody correlation data were obtained for ${ }^{6} \mathrm{Be}$ decay over a broad range of decay energies. These experimental results are reproduced by the three-cluster model. The data elucidate the mechanism of democratic decay and emphasize the paradoxical and rather complex nature of 3 -body decay. They completely devalue the simplistic ideas of "sequential" and "diproton" decay in favor of complex three-body dynamics.

Acknowledgments. - I.A.E. and L.V.G. are supported by the Helmholtz Association under grant agreement IK-RU-002 via FAIR-Russia Research Center. L.V.G. is supported by HIC for FAIR research grant, RFBR 11-02-00657-a grant and Russian Ministry of Industry and Science grant NSh-7235.2010.2. This work was supported by the U.S. Department of Energy, Division of Nuclear Physics under grants DE-FG02-87ER-40316 and DE-FG02-04ER41320 and the National Science Foundation under grants PHY-0606007 and PHY-9977707.
[1] O.V. Bochkarev et al., Nucl. Phys. A505 215, (1989).
[2] M. Pfützner et al., Rev. Mod. Phys. 84, 567 (2012).
[3] B.V. Danilin et al., Sov. J. Nucl. Phys. 46, 225 (1987)
[4] F.C. Barker, Phys. Rev. C 68, 054602 (2003).
[5] B. Blank, M. Ploszajczak, Rep. Prog. Phys. 71, 046301 (2008).
[6] R. Alvarez-Rodriguez et al., Phys. Rev. Lett. 100, 192501 (2008).
[7] L.V. Grigorenko et al., Phys. Lett. B677, 30 (2009).
[8] L.V. Grigorenko et al., Phys. Rev. C 80, 034602 (2009).
[9] R.J. Charity et al., Phys. Rev. C 82, 041304 (2010).
[10] P. Papka et al., Phys. Rev. C 81, 054308 (2010).
[11] A.S. Fomichev et al., Phys. Lett. B708 6, (2012)
[12] M.S. Wallace et al., Nucl. Instr. Meth. A583, 302 (2007).
[13] G.L. Engel et al., Nucl. Instr. Meth. A573, 418 (2007).
[14] M.V. Zhukov et al., Phys. Rev. C 50, R1 (1994).
[15] D.F. Geesaman et al., Phys. Rev. C 15, 1835 (1977).

