
1

Fall 2017 - Research Report

Jordan Stomps

February 16th, 2018

Summary

This report is designed to give an overview towards the efforts to construct an
Online Data Acquisition system for the Proton Detector built by Dr. Chris Wrede’s
research team and associates. The research group is developing a detector that
measures beta decay from proton-rich nuclides. This detector and its corresponding
experimental results, will be applied to the field of astrophysics, specifically to the
rates of nuclear reactions occurring during explosions on the surfaces of accreting
white dwarf and neutron stars in binary systems. This gas-filled detector is mainly
constructed but its subsidiary components are being optimized and developed. In
the purview of this report, one system that needs to be developed is the online data

acquisition system. Online in accelerator physics means while the accelerator beam
is active. Currently, the infrastructure of the proton detector allows it to collect data,
and then once the experiment is complete, the data can be analyzed. The research
group needs a system that can actively monitor and sort the data as it is collected for
the commissioning experiment of the detector in April 2018. The online system that
will be utilized is a lab supported program called SpecTcl. This report should give an
adequate summation of how the experiment-specific SpecTcl being developed for the
proton detector operates as of December 2017.

1 How SpecTcl Interacts with DDAS

For reference, DDAS means Digital Data Acquisition System. Effectively, this is what
collects data for the proton detector and sends it (using Readout) to a place that can be
analyzed, like SpecTcl. A channel in the DDAS system is basically a channel for data to
flow from collection and out to analysis. For example, if the proton detector has 13
channels, that means there are 13 points of data collection that are being processed and
sent from Readout to SpecTcl. Readout is the program that takes events that are
recognized by data collection and process them into data that can be sent to analysis
software. Figure 1.1 describes what happens when data is sent to Readout.

2

 As readout recognizes these data points, it packages it

in an event that can then be sent to SpecTcl. If we could
zoom into the bottom square titled SpecTcl, we would be
able to break it down into Figure 1.2.

 When SpecTcl is sent an event, it unpacks that event
using Event Processors (which are each portion of code
described below) and using the parameters described in
initialization, it visualizes the data on a histogram.

Both diagrams come from the user guides and resources for SpecTcl and DDAS
found at http://docs.nscl.msu.edu/daq/newsite.

2 File Location

As of this writing, there are two SpecTcl builds being used. The first was pre-built and
distributed amongst NSCL/FRIB. That is, the framework is readily available on the
NSCL/FRIB servers and can be tailored to meet the specific needs of a project or
experiment. Ideally, this is the build that the research group would like to use as it already
has multiple prebuilt objects that can be used online. Currently, this code does not operate
with the proton detector but work is being done to integrate it. This build will commonly
be called Brent’s SpecTcl in this report. The other build is one being built using the
tutorials provided in SpecTcl Documentation online. The benefit of this build is that it is
up-to-date and currently works using offline detector data (and is being tested to see if it
works online with the detector). However, this build is very basic and does not have all
the implementations needed for the experiment as of this writing. This build will

commonly be referred to as SpecTcl in this report.
Each build has a location in the file system for the proton detector (this report assumes

the reader is navigating the file system on a Linux computer). To find Brent’s SpecTcl,
open a terminal and type cd /user/protondetector/readout/test2/spectcl-

online/spectcl-online. All necessary files for the build will be in this folder. To launch

Brents SpecTcl build, simply type ./SpecTcl in this folder. Assuming no errors occur,

this will compile the source code and launch the GUI for SpecTcl. To find the source code

Figure 1.1 – Found at NSCL DDAS
Docs (https://goo.gl/X32zXL)

Figure 1.2 – Found in NSCL SpecTcl Guide (https://goo.gl/cgTM9X)

http://docs.nscl.msu.edu/daq/newsite

3

discussed in this report, go to the directory above and type cd src. This folder contains

all the code files that can be edited to tailor the SpecTcl build (more on this later).
Currently, the objects used in Brent’s SpecTcl are SpecTcl_ddas, Unpacker_ddas,

Parameters-ddas, Variables-ddas, Calibrator_ddas, and Threshold_ddas (both .cpp and .h

files). If at any point this SpecTcl needs to be updated or recompiled, simply go to the
location of the source code and enter the command make. Assuming no errors occur, this

will recompile the source code and build SpecTcl, to which it can then be launched again.

To find the folder for the standard SpecTcl build, type the command cd /user/

protondetector/readout/test2/Jordan_SpecTcl_Dev/current/Skel. This

contains both the location to launch SpecTcl and all its source code. Currently, all code files
in this location are being used; MyParameters, MyParameterMapper, and MySpecTclApp

(both .cpp and .h files). To launch SpecTcl, simply go to this directory and type ./SpecTcl.

If at any point this SpecTcl needs to be updated or recompiled, simply go to the location of
the source code and enter the command make. Assuming no errors occur, this will recompile

the source code and build SpecTcl, to which it can then be launched again.

For new users to editing code, there are two simple ways to edit source code files for
either built:

• Type the command geany and then open the file in the program that is opened.

• Type the command gedit <file-name> where <file-name> is the full name

(including extension) of the code to be edited.

It will often be necessary to test SpecTcl using offline data. It will be explained later in the
report how to launch these data files in Spectcl, but the file location is:
/user/protondetector/ readout/test2/data/runs/complete (just use the cd

command again). Traditionally run-212-00.evt has been used to test SpecTcl (as in Figure 4.2).

3 How to Read SpecTcl Code

Because I did not build Brent’s SpecTcl source code, I will not comment on what each code
file means, but I will give an overview as to the source code of the standard SpecTcl build.
This build was created using the tutorial Analyzing DDAS Data in SpecTcl Tutorial found
here: http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/ddas_spectcl.html. As of this writing,

the build has not strayed far from the code displayed in the tutorial. For that reason, while
it may change in the future, this report will only give supplemental feedback to the
comments in the tutorial. Ultimately, if this build is used for the experiment, the code will
certainly stray from the tutorial as cuts and other parameters will need to be
implemented.

Simply put, there is only a small distinction between .cpp and .h files. .h files are for
declarations, whereas .cpp files are for definitions. Because of that, .h files have a #include

line in .cpp files. This is just to help organize code:

http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/ddas_spectcl.html
http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/ddas_spectcl.html

4

3.1 MyParameters.h

This creates a tree structure for each parameter (or channel) of data. Basically, tree
structure is a way of grouping like-parameters together. Currently, the code creates 48
parameters that are associated with potentially 48 channels of raw data. Note that for our
experiment, there are not 48 channels worth of data. Instead, we have 13 channels for the
proton detector and (eventually) 16 channels for SeGA. Fortunately, SpecTcl does not care
how many channels are initialized as DDAS will assign a channel to each event hit. Thus,
within SpecTcl, only the channels that are desired for viewing need to be selected and the
rest can be ignored.

3.2 MyParameters.cpp

This initializes each of the 48 parameters. The first class creates the framework for each

channel. It creates an energy and timestamp for each channel. The original code prepares
spectra with 4095 bins. For our experiment, there are 65536 bits worth of data being
collected. However, if we binned this, it would produce large amounts of data that would
not be feasible for SpecTcl. 4095 may be a reasonable range for our measurements, but
fortunately these parameters can be changed during SpecTcl initialization. The
timestamp is registered in nanoseconds and has a similar structure to how energy is
initialized. This can easily be changed to fit our experiment. Remember, these settings are
simply to help visualize the data in a spectrum, they do not affect the data that is being
collected from DDAS. With that in mind, these settings will need to be tailored for our
specific experiment. The second class runs through a loop to create an energy and
timestamp parameter for each channel and it also creates a multiplicity spectra to see
which channels of the detector collected data.

3.3 MyParameterMapper.h

This code uses a specific object that is already built to communicate with DDAS so that
event hits can be unpacked and prepared for SpecTcl. This object is a ddaschannel object
that knows the format in which DDAS Hits can be unpacked. In the code, this separate
class is referred to as DAQ::DDAS::DDASHitUnpacker. Information on this class can be

found at its reference page located here: http://docs.nscl.msu.edu/daq/newsite/ddas-

1.1/classDAQ_1_1DDAS_ 1_1DDASHitUnpacker.html. The benefit of using this class is that

it knows how to communicate with DDAS so we dont have to create an object or class that
manually unpacks hits (an example of how a manual unpacker is coded can be found in
Brent’s SpecTcl: Unpacker_ddas.cpp and Unpacker_ddas.h). The reason Brent’s

SpecTcl was unsuccessful at unpacking our event files was because it unpacked data in a

way that was incompatible with the DDAS data we collected. For this reason, we should
continue to use DAQ::DDAS::DDASHitUnpacker while it works with our detector and

DAQ system.

3.4 MyParameterMapper.cpp

This file takes the unpacked event hits from the above code and assigns them to the
proper channel index based on the information that was unpacked. As of this writing, this

http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/classDAQ_1_1DDAS_1_1DDASHitUnpacker.html
http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/classDAQ_1_1DDAS_1_1DDASHitUnpacker.html
http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/classDAQ_1_1DDAS_1_1DDASHitUnpacker.html
http://docs.nscl.msu.edu/daq/newsite/ddas-1.1/classDAQ_1_1DDAS_1_1DDASHitUnpacker.html

5

code works properly with the data we are collecting, and thus has not been changed

extensively from the coding tutorial.

3.5 MySpecTclApp.h and MySpecTclApp.cpp

These files are what initializes SpecTcl with all the additional code compiled. This can
mostly be left untouched but it is important to note an addition to MySpecTclApp.cpp.

In this section, we ensure that DDASBuiltUnpacker.h is included to help unpack the

DDAS data. The parameter name (currently raw for each channel because it consists of
the raw data) is initialized in this section.

3.6 Makefile

This file contains the code that compiles a SpecTcl build that can be used. Of notable
importance, each code file must be added as an object variable in the OBJECTS= line.

Additionally, the USERCXXFLAGS= and USERLDFLAGS= lines must specify that DDAS code

must be compiled with SpecTcl.

Once each code file has been written, SpecTcl can be compiled by typing make in the

command line where the Makefile is located. When this has been accomplished, and
assuming no errors are encountered, SpecTcl can then be run with the command given
above. Compiling only needs to occur after changes to the code have been made, not
before every time SpecTcl is opened.

4 How to Operate SpecTcl

The goal of this section is to briefly explain how the SpecTcl GUI is used to produce spectra
and connect to data sources. Once SpecTcl has been started, the treegui will be initialized.
To add parameters or channels. Go to the Spectra tab and type in a name for the channel

under SpectrumName. I usually choose something like test.raw_data.ch.01 for channel 1

event hits as seen in Figure 4.1. For the actual experiment, or when collecting data, it is
more appropriate to type proton_detector instead of test for example. Then select
Parameter below this and select the appropriate parameter to be created. At this point,

the limits or bins can be changed or the default can be kept. Once these things have been
filled out, Create/Replace can be selected to add this parameter to those that are saved.

To avoid repeating the tedious task of creating every channel/parameter, once this task
has been satisfactorily completed, the Save button can be selected in the top-right and a

definition file can be created and loaded for later use.

6

Figure 4.1

To connect to a data source,
select Data Source in the top-

left menu bar. If you want to
connect an event file, select File

and a new GUI will be selected.
From here, you can use the left
pane to navigate (use the .. to go

back a directory) and the right
pane to select event files
available in the specified
directory. Once the file has been
selected, choose the appropriate

ring (either Ring10 or Ring11)
and select Ok. Once each buffer

has been analyzed, the data will
be compiled in SpecTcl and the
Xamine GUI can be selected. Use
Display in the bottom-left to

select which channel should be Figure 4.2

7

displayed in the viewpane. You can also press Update All if any changes have been made

to the data or spectrum. If these steps are conducted correctly, an example of what Xamine
should look like is displayed in Figure 4.2.

To attach an online data source,
select Data Source in the top-left

menu bar and choose Online..

Then, fill out Host and Ring using the
appropriate Readout settings. While
this has not been tested, the correct
values should be localhost for Host

(assuming SpecTcl is running on the
same computer that DDAS is) and 0400x for Ring, as seen in Figure 4.3. Also make sure to

select the correct data format (either Ring10 or Ring11) and select Ok. Then, just as with

the event file, Xamine can be used to view spectra as the data is collected from DDAS.

5 Looking Forward

This is currently the extent to which SpecTcl has been created and used. That said, I
should highlight a few things that will need to be implemented and tailored to SpecTcl
before it is truly ready to be used experimentally:

• Channels and parameters for SeGa (or any other additional data sources) will need
to be added to the parameters available in SpecTcl for the actual experiment.

• Cuts/Slices used to analyze data from the detector will need to be implemented.
This should not be hard as Moshe Friedman already has these created in Root code.

Thus, the Root code will simply need to be translated and added to SpecTcl in a way
that it can understand and compile.

• Most importantly, online data collection needs to be tested to ensure it works with
our detector. While most of the information needed to collect data online with
SpecTcl is known, it has not actually been tested for issues while communicating
with DDAS.

Figure 4.3

